289
Views
8
CrossRef citations to date
0
Altmetric
Original Article

Cyanophycin production from feather hydrolysate using biotechnological methods

ORCID Icon, &
Pages 589-598 | Received 14 Feb 2018, Accepted 21 Apr 2018, Published online: 11 Jun 2018
 

Abstract

Cyanophycin is a bacterial storage polymer for carbon, nitrogen and energy with emerging industrial applications. As efficient cyanophycin production is enhanced by peptone, but commercial peptones are very expensive, thereby increasing the overall production cost, an enzymatically produced feather hydrolysate (FH) is assessed as a cheap replacement of peptone to lower the costs and make cyanophycin production more economically feasible. Keratinase production using feather as the sole carbon/nitrogen source by S.pactum 40530 at 30-L fermentation scale was achieved within 93 h with degradation rate of 96.5%. A concentration of 60 g/L of FH, generated by keratinolytic activity (8 × 103 U g−1L−1d−1) within 24 h, was used as the main carbon/peptone source to produce cyanophycin. The growth performances of E. coli DapE/L using FH was compared to that of casamino acids (CA) and up to 7.1 ± 0.4 and 5.3 ± 0.3 g/L of cell mass were obtained after 72 h from FH and CA, respectively. Cyanophycin production yielded 1.4 ± 0.1g/L for FH with average molecular mass of 28.8 and 1.4 ± 0.2 for CA with average molecular mass of 35.3, after 60 h. For the first time, FH generated by biotechnological methods from environmentally problematic, abundant and renewable feather bioresource was successfully used for cyanophycin biopolymer production.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work has been supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under the scholarship programme, International Postdoctoral Research Scholarship Programme [application number: 1059B191501963], utilizing the laboratory facilities in Institute of Molecular Microbiology and Biotechnology (Westfalische Wilhelms-Universitat Muenster, GERMANY).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.