289
Views
8
CrossRef citations to date
0
Altmetric
Original Article

Cyanophycin production from feather hydrolysate using biotechnological methods

ORCID Icon, &
Pages 589-598 | Received 14 Feb 2018, Accepted 21 Apr 2018, Published online: 11 Jun 2018

References

  • Simon, R.D. Cyanophycin granules from the blue-green alga Anabaena cylindrica: a reserve material consisting of copolymers of aspartic acid and arginine. Proc. Natl. Acad. Sci. USA. 1971, 68, 265–267.
  • Frey, K.M.; Oppermann-Sanio, F.B.; Schmidt, H.; Steinbüchel, A. Technical-scale production of cyanophycin with recombinant strains of Escherichia coli. Appl. Environ. Microbiol. 2002, 68, 3377–3384.
  • Krehenbrink, M.; Oppermann-Sanio, F.B.; Steinbüchel, A. Evaluation of non-cyanobacterial genome sequences for occurrence of genes encoding proteins homologous to cyanophycin synthetase and cloning of an active cyanophycin synthetase from Acinetobacter sp. strain DSM 587. Arch. Microbiol. 2002, 177, 371–380.
  • Sallam, A.; Steinle, A.; Steinbüchel, A. Cyanophycin: biosynthesis and applications. In Microbial production of biopolymers and polymer precursors; Rehm, B.H.A., Ed.; Caister Academic Press: Norfolk, 2009; pp. 79–100.
  • Joentgen. W.; Groth, T.; Steinbüchel, A.; Hai, T.; Oppermann-Sanio, F.B. Polyasparaginic acid homopolymers and copolymers, biotechnical production and use thereof, International patent application 1998; WO 98/39090.
  • Schwamborn, M. Chemical synthesis of polyaspartates: a biodegradable alternative to currently used polycarboxylate homo- and copolymers. Polym. Degrad. Stab. 1998, 59, 39–45.
  • Miller, T.C.; Holcombe, J.A. Comparison and evaluation of the synthetic biopolymer poly-L-aspartic acid and the synthetic ‘plastic’ polymer poly-acrylic acid for use in metal ion-exchange systems. J. Hazard. Mater. 2001, 83, 219–236.
  • Yang, J.; Wang, F.; Tan, T. Controlling degradation and physical properties of chemical sand fixing agent-poly(aspartic acid) by crosslinking density and composites. J. Appl. Polym. Sci. 2009, 111, 1557–1563.
  • Vecht-Lifshitz, S.E.; Almas, K.A.; Zomer, E. Microbial growth on peptones from fish industrial wastes. Lett. Appl. Microbiol. 1990, 10, 183–186.
  • Korniłłowicz-Kowalska, T.; Bohacz, J. Biodegradation of keratin waste: theory and practical aspects. Waste. Manag. 2011, 31, 1689–1701.
  • Rajput, R.; Gupta, R. Thermostable keratinase from Bacillus pumilus KS12: production, chitin crosslinking and degradation of Sup35NM aggregates. Bioresour. Technol. 2013, 133, 118–126.
  • Sivakumar, T.; Shankar, T. Statistical optimization of keratinase production by Bacillus cereus. Glob. J. Biotechnol. Biochem. 2011, 6, 197–202.
  • Yusuf, I.; Shukor, M.Y.; Syed, M.A.; Yee, P.L.; Shamaan, N.A.; Ahmad, S.A. Investigation of keratinase activity and feather degradation ability of immobilized Bacillus sp. Khayat in the presence of heavy metals in a semi continuous fermentation. J. Chem. Pharm. Sci. 2015, 8, 342–347.
  • Tarte, R. Meat-derived protein ingredients. In Ingredients in Meat Products; Tarte, R., Ed.; Springer: New York, 2009; pp. 145–171.
  • Böckle, B.; Müller, R. Reduction of disulfide bonds by Streptomyces pactum during growth on chicken feathers. Appl. Environ. Microbiol. 1997, 63(2), 790–792.
  • Kroll, J.; Klinter, S.; Steinbüchel, A. A novel plasmid addiction systemfor large-scale production of cyanophycin in Escherichia coli using mineral salts medium. Appl. Microbiol. Biotechnol. 2011, 89, 593–604.
  • Thys, R.C.S.; Lucas, F.S.; Riffel, A.; Heeb, P.; Brandelli, A. Characterization of a protease of a feather degrading Microbacterium species. Lett. Appl. Microbiol. 2004, 39, 181–186.
  • Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685.
  • Moore, S.; Stein, W.H. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J. Biol. Chem. 1957, 211, 907–913.
  • Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254.
  • Aboulmagd, E.; Oppermann-Sanio, F.B.; Steinbüchel, A. Molecular characterization of the cyanophycin synthetase from Synechocystis sp. strain PCC6308. Arch. Microbiol. 2000, 174, 297–306.
  • Steinle, A.; Bergander, K.; Steinbüchel, A. Metabolic engineering of Saccharomyces cerevisiae for production of novel cyanophycins with an extended range of constituent amino acids. Appl. Environ. Microbiol. 2009, 75, 3437–3446.
  • Elbahloul, Y.; Krehenbrink, M.; Reichelt, R.; Steinbüchel, A. Physiological conditions conducive to high cyanophycin content in biomass of Acinetobacter calcoaceticus strain ADP1. Appl. Environ. Microbiol. 2005, 71, 858–866.
  • Kolodny, N.H.; Bauer, D.; Bryce, K.; Klucevsek, K.; Lane, A.; Medeiros, L.; Mercer, W.; Moin, S.; Park, D.; Petersen, J.; et al. Effect of nitrogen source on cyanophycin synthesis in Synechocystis sp. strain PCC 6308. J. Bacteriol. 2006, 188, 934–940.
  • Suntornsuk, W.; Suntornsuk, L. Feather degradation by Bacillus sp. FK 46 in submerged cultivation. Bioresour. Technol. 2003, 86, 239–243.
  • Fakhfakh, N.; Ktari, N.; Haddar, A.; Mnif, I.C.H.; Dahmen, I.; Nasri, M. Total solubilisation of the chicken feathers by fermentation with a keratinolytic bacterium, Bacillus pumilus A1, and the production of protein hydrolysate with high antioxidative activity. Process. Biochem. 2011, 46, 1731–1737.
  • Grazziotin, A.; Pimentel, F.A.; Sangali, S.; De Jong, E.V.; Brandelli, A. Production of feather protein hydrolysate by keratinolytic bacterium Vibrio sp. kr2. Bioresour. Technol. 2007, 98(16), 3172–3175.
  • Kristinsson, H.G.; Rasco, B.A. Fish protein hydrolysates: production, biochemical, and functional properties. Crit. Rev. Food Sci. Nutr. 2000, 40, 43–81.
  • Sangali, S.; Brandelli, A. Feather keratin hydrolysis by a Vibrio sp. strain kr2. J. Appl. Microbiol. 2000, 89, 735–743.
  • Takami, H.; Nakamura, S.; Aono, R.; Horikoshi, K. Degradation of human hair by a thermostable alkaline protease from alkaliphilic Bacillus sp. No. AH-101. Biosci. Biotechnol. Biochem. 1992, 56(10), 1667–1669.
  • Suh, H.J.; Lee, H.K. Characterization of a keratinolytic serine protease from Bacillus subtilis KS-1. J. Protein Chem. 2001, 20(2), 165–169.
  • Ramani, P.; Singh, R.; Gupta, R. Keratinolytic potential of Bacillus licheniformis RG1: structural and biochemical mechanism of feather degradation. Can J Microbiol. 2005, 51(3), 191–196.
  • Kunert, J. Effect of reducing agents on proteolytic and keratinolytic activity of enzymes of Microsporum gypseum. Mycoses. 1992, 35, 343–348.
  • Laba, W.; Szczekała, K.B. Keratinolytic proteases in biodegradation of pretreated feathers. Pol. J. Environ. Stud. 2013, 22(4), 1101–1109.
  • Böckle, B.; Galunsky, B.; Müller, R. Characterization of a keratinolytic serine proteinase from streptomyces pactum DSM 40530. Appl. Environ. Microbiol. 1995, 61(10), 3705–3710.
  • Taskin, M.; Kurbanoglu, E.B. Evaluation of waste chicken feathers as peptone source for bacterial growth. J. Appl. Microbiol. 2011, 111(4), 826–834.
  • Furlong, C.E. Osmotic-shock-sensitive transport systems. In Escherichia coli and Salmonella typhimurium; Neidhardt, F.C., Ed.; American Society for Microbiology, 1987 Washington, D.C., pp. 768–796.
  • Solaiman, D.K.; Garcia, R.A.; Ashby, R.D.; Piazza, G.J.; Steinbüchel, A. Rendered-protein hydrolysates for microbial synthesis of cyanophycin biopolymer. N. Biotechnol. 2011, 28(6), 552–558.
  • Elbahloul, Y.; Frey, K.; Sanders, J.; Steinbüchel, A. Protamylasse, a residual compound of industrial starch production, provides a suitable medium for large-scale cyanophycin production. Appl. Environ. Microbiol. 2005, 71(12), 7759–7767.
  • Wiefel, L.; Steinbüchel, A. Solubility behavior of cyanophycin depending on lysine content. Appl. Environ. Microbiol. 2014, 80(3), 1091–1096
  • Berg, H.; Ziegler, K.; Piotukh, K.; Baier, K.; Lockau, W.; Volkmer-Engert, R. Biosynthesis of the cyanobacterial reserve polymer multi-L-arginylpoly- L-aspartic acid (cyanophycin): mechanism of the cyanophycin synthetase reaction studied with synthetic primers. Eur. J. Biochem. 2000, 267, 5561–5570.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.