220
Views
1
CrossRef citations to date
0
Altmetric
Articles

Analysis and monitoring of mode transitions during afm nanomachining of IZO-Coated pyrex glass

&
 

ABSTRACT

The goal of this research is to investigate and monitor machining mode transitions during nanoscale scratching of IZO-coated Pyrex glasses using atomic force microscope (AFM). Among the AFM nanomachining mode features, which include elastic/plastic deformations and crack generation, pile-up (by ploughing) is a key surface phenomenon that can represent plastic deformation characteristics, such as a sign of chip making. Moreover, because the pile-up formation mechanism of coated materials is reported to be distinct from that of bulk materials, the examination of pile-up in coated materials is challenging, along with brittle transition (crack initiation). In this research, the pile-up formation and crack initiation, that occur during nanoscratching, were examined and analyzed near the coating-substrate (glass) boundary. In addition, acoustic emission (AE), a sensing scheme with nanoscale sensitivity, was introduced to detect significant machining state variations and mode transitions. Experimental and analysis results indicate that the proposed scheme is viable for characterizing/monitoring the nanoscale machining of coated materials.

Acknowledgment

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) (2017R1D1A1B03035551).

Additional information

Funding

National Research Foundation of Korea (2017R1D1A1B03035551).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.