250
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advances in micro electro discharge machining of biomaterials: a review on processes, industrial applications, and current challenges

ORCID Icon, ORCID Icon, & ORCID Icon
 

Abstract

Micro Electro-Discharge Machining is a precision machining process that uses electrical discharge to produce small-scale components with high accuracy. A metal workpiece is machined in this process by repeatedly generating spark between a tool electrode and the workpiece, removing material in a controlled manner. The significance of µ-EDM lies in its ability to produce highly accurate and complex components with a high surface finish, making it ideal for use in various industries, including aerospace, medical, and electronics. The critical parameters to the success of µ-EDM include the electrical discharge energy, voltage, current, pulse duration, and spark gap between the tool electrode and workpiece, including the shape and size of the tool electrode. This review article discusses the µ-EDM process used to machine biological materials and also examines the µ-EDM, dry µ-EDM procedure, and the features of biomedical materials for biocompatibility, 3D micro shape machining with tool wear composition, and thin film coating for microelectrodes. The impact of introducing nanoparticles to dielectric fluids is further clarified in this article. This study addresses the prospective future research subjects and application areas for the µ-EDM process in order to fulfill the demanding criteria for biomaterials and their usage in the production of bioimplants.

Disclosure statement

All authors have no conflicts of interest related to the work. The purpose of this statement is to provide transparency and allow readers, reviewers, and editors to assess any potential biases or influences on the research findings.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.