250
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advances in micro electro discharge machining of biomaterials: a review on processes, industrial applications, and current challenges

ORCID Icon, ORCID Icon, & ORCID Icon

References

  • Abidi, M.H.; Al-Ahmari, A.M.; Umer, U.; Rasheed, M.S. (2018) Multi-objective optimization of micro-electrical discharge machining of nickel-titanium-based shape memory alloy using MOGA-II. Measurement, 125: 336–349. doi:10.1016/j.measurement.2018.04.096
  • Abraham, A.M.; Venkatesan, S. (2022) A review on application of biomaterials for medical and dental implants. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 237(2): 249–273. doi:10.1177/14644207221121981
  • Afshari, A.; Ali Mosaddad, S.; Alam, M.; Abbasi, K.; Darestani, M.N. (2022) Biomaterials and biological parameters for fixed-prosthetic implant-supported restorations: a review study. Advances in Materials Science and Engineering, 2022:1–16. doi:10.1155/2022/2638166
  • Aherwar, A.; Singh, K.A.; Patnaik, A. (2015) Current and future biocompatibility aspects of biomaterials for hip prosthesis. AIMS Bioengineering, 3(1): 23–43. doi:10.3934/bioeng.2016.1.23
  • Akhtar, S.N. (2015) Micromachining of thin films and surfaces of metals and polymers using excimer laser. PhD Thesis, Indian institute of technology kanpur. 40.
  • Al-Amin, M.; Abdul Rani, A.M.; Abdu Aliyu, A.A.; Abdul Razak, M.A.; Hastuty, S.; Bryant, M.G. (2020) Powder mixed-EDM for potential biomedical applications: a critical review. Materials and Manufacturing Processes, 35(16): 1789–1811. doi:10.1080/10426914.2020.1779939
  • Al-Amin, M.; Abdul-Rani, A.M.; Ahmed, R.; Rao, T.V. (2021) Multiple-objective optimization of hydroxyapatite-added EDM technique for processing of 316L-steel. Materials and Manufacturing Processes, 36(10): 1134–1145. doi:10.1080/10426914.2021.1885715
  • Al-Amin, M.; Abdul-Rani, A.M.; Rana, M.; Hastuty, S.; Danish, M.; Rubaiee, S.; Mahfouz, A. b (2022) Evaluation of modified 316L surface properties through HAp suspended EDM process for biomedical application. Surfaces and Interfaces, 28: 101600. doi:10.1016/j.surfin.2021.101600
  • Alavi, F.; Jahan, M.P. (2017) Optimization of process parameters in micro-EDM of Ti-6Al-4V based on full factorial design. The International Journal of Advanced Manufacturing Technology, 92(1-4): 167–187. doi:10.1007/s00170-017-0103-x
  • Ali, M.Y.; Banu, A.; Rahman, M.A. (n.d.) Micro dry wire EDM : Kerf investigation using response surface methodology micro dry wire EDM : kerf investigation using response surface methodology. doi:10.1088/1757-899X/926/1/012002
  • Ali, M.Y.; Banu, A.; Shaffiq, M.; Rahman, M.A.; Konneh, M.; Salehan, M. (2019) Investigation of taper angle in dry micro wire EDM. International Journal of Mechanical Engineering and Robotics Research, 8(5): 725–728. doi:10.18178/ijmerr.8.5.725-728
  • Al-Shalawi, F.D.; Mohamed Ariff, A.H.; Jung, D.-W.; Mohd Ariffin, M.K.A.; Seng Kim, C.L.; Brabazon, D.; Al-Osaimi, M.O. (2023) Biomaterials as implants in the orthopedic field for regenerative medicine: Metal versus synthetic polymers. Polymers, 15(12): 2601. doi:10.3390/polym15122601
  • Asad, A.B.M.A.; Masaki, T.; Rahman, M.; Lim, H.S.; Wong, Y.S. (2007). Tool-based micro-machining. Journal of Materials Processing Technology, 193: 204–11. doi:10.1016/j.jmatprotec.2007.04.038
  • Axinte, D.; Guo, Y.; Liao, Z.; Shih, A.J.; M’Saoubi, R.; Sugita, N. (2019) Machining of biocompatible materials—recent advances. CIRP Annals, 68(2): 629–652. doi:10.1016/j.cirp.2019.05.003
  • Ay, M.; Çaydaş, U.; Hasçalık, A. (2013) Optimization of micro-EDM drilling of inconel 718 superalloy. The International Journal of Advanced Manufacturing Technology, 66(5-8): 1015–1023. doi:10.1007/s00170-012-4385-8
  • Bains, P.S.; Bahraminasab, M.; Singh Sidhu, S.; Singh, G. (2020) On the machinability and properties of Ti–6Al–4V biomaterial with n-HAp Powder–mixed ED machining. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 234(2): 232–242. doi:10.1177/0954411919891887
  • Bellotti, M.; Qian, J.; Reynaerts, D. (2018) Enhancement of the micro-EDM process for drilling through-holes. Procedia CIRP, 68(April): 610–615. doi:10.1016/j.procir.2017.12.123
  • Beukema, G.P. (n.d) Electrical B Re Akdown in vacuum.
  • Biesiekierski, A.; Munir, K.; Li, Y.; Wen, C. (2021) Titanium alloys. Structural Biomaterials: Properties, Characteristics, and Selection 46 157–187. doi:10.1016/B978-0-12-818831-6.00004-5
  • Biswas, S.; Rahul  .. 2022. The outcome of dielectric fluids in electrical discharge machining performance: a review. Materials Today: Proceedings, 56: 56–59. doi:10.1016/j.matpr.2021.12.138
  • Bohn, R.E. (2005) From art to science in manufacturing: The evolution of technological knowledge. Foundations and Trends® in Technology, Information and Operations Management, 1(2): 1–82. doi:10.1561/0200000002
  • Butt, M.A.; Tyszkiewicz, C.; Karasiński, P.; Zięba, M.; Kaźmierczak, A.; Zdończyk, M.; Duda, Ł.; Guzik, M.; Olszewski, J.; Martynkien, T.; Bachmatiuk, A.; Piramidowicz, R. (2022) Optical thin films fabrication techniques—towards a low-cost solution for the integrated photonic platform: A review of the current status. Materials, 15(13): 4591. doi:10.3390/ma15134591
  • Čapek, J.; Machová, M.; Fousová, M.; Kubásek, J.; Vojtěch, D.; Fojt, J.; Jablonská, E.; Lipov, J.; Ruml, T. (2016) Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting. Materials Science & Engineering. C, Materials for Biological applications, 69: 631–639. doi:10.1016/j.msec.2016.07.027
  • Chakraborty, S.; Dey, V.; Ghosh, S.K. (2015) A review on the use of dielectric fluids and their effects in electrical discharge machining characteristics. Precision Engineering, 40: 1–6. doi:10.1016/j.precisioneng.2014.11.003
  • Chen, D.; Liu, S.; Yin, S.; Liang, J. (2017) Light-addressable potentiometric sensor with the micro blind holes substrate. IET Science, Measurement & Technology, 11(1): 57–62. doi:10.1049/iet-smt.2016.0175
  • Chen, J. (n.d) Simulation Research on the Thermal Phase Transition of EDM and the Formation Mechanism of Remelted Layer in Single Pulse Spark Discharge Crater Simulation Research on the Thermal Phase Transition of EDM and the Formation Mechanism of Remelted Layer in Sin. 0–30.
  • Chen, Q.; Thouas, G.A. (2015) Metallic implant biomaterials. Materials Science and Engineering: R: Reports, 87: 1–57. doi:10.1016/j.mser.2014.10.001
  • Chong, E.T.J.; Ng, J.W.; Lee, P.C. (2023) Classification and Medical Applications of Biomaterials–A Mini Review. BIOI, 4(2): 54–61. doi:10.15212/bioi-2022-0009
  • Chu, X.; Zhu, K.; Wang, C.; Hu, Z.; Zhang, Y. (2016) A study on plasma channel expansion in micro-EDM. Materials and Manufacturing Processes, 31(4): 381–390. doi:10.1080/10426914.2015.1059445
  • D’Urso, G.; Giardini, C.; Quarto, M. (2018) Characterization of surfaces obtained by micro-EDM milling on steel and ceramic components. The International Journal of Advanced Manufacturing Technology, 97(5-8): 2077–2085. doi:10.1007/s00170-018-1962-5
  • D’Urso, G.; Maccarini, G.; Quarto, M.; Ravasio, C.; Caldara, M. (2016) Micro-electro discharge machining drilling of stainless steel with copper electrode: the influence of process parameters and electrode size. Advances in Mechanical Engineering, 8(12): 168781401667642. doi:10.1177/1687814016676425
  • D’Urso, G.; Maccarini, G.; Ravasio, C. (2014) Process performance of micro-EDM drilling of stainless steel. The International Journal of Advanced Manufacturing Technology, 72(9-12): 1287–1298. doi:10.1007/s00170-014-5739-1
  • Davis, R.; Singh, A.; Debnath, K.; Jackson, M.J.; Soares, P.; Amorim, F.L.; Dutta, H. (2021a). Effect of powder particle concentration and tool electrode material amid zinc powder-mixed ΜEDM of biocompatible Mg Alloy AZ91D. Journal of Materials Engineering and Performance, 30(8): 5704–5718. doi:10.1007/s11665-021-05788-z
  • Davis, R.; Singh, A.; Debnath, K.; Maia, R.; Popat, K.; Rosa, L.; Soares, P. (2021b) Surface & coatings technology machining characteristics of Zn powder mixed- µ -EDM” 425 (July).
  • Davis, R.; Singh, A.; Debnath, K.; Soares, P.; Och, S.H.; Keshri, A.K.; Sopchenski, L.; Terryn, H.A. (2022a) Enhanced abrasive - mixed - µ - EDM performance towards improved surface characteristics of Biodegradable Mg AZ31B alloy. The International Journal of Advanced Manufacturing Technology, 124(7-8): 2685–2700. doi:10.1007/s00170-022-10673-7
  • Davis, R.; Singh, A.; Jackson, M.J.; Coelho, R.T.; Prakash, D.; Charalambous, C.P.; Ahmed, W.; da Silva, L.R.R.; Lawrence, A.A. (2022b) A comprehensive review on metallic implant biomaterials and their subtractive manufacturing. The International Journal of Advanced Manufacturing Technology, 120(3-4): 1473–1530. doi:10.1007/s00170-022-08770-8
  • Deris, A.M.; Zain, A.M.; Sallehuddin, R.; Sharif, S. (2017) Harmony search optimization in dimensional accuracy of die sinking EDM process using SS316L stainless steel. Journal of Physics: Conference Series, 892(1): 012003. doi:10.1088/1742-6596/892/1/012003
  • Descoeudres, A. (2006) Characterization of electrical discharge machining plasmas. 3542.
  • Disegi, J.A.; Eschbach, L. (2000) Stainless steel in bone surgery. Injury, 31(SUPPL. 4): D2–D6. doi:10.1016/S0020-1383(00)80015-7
  • Dornfeld, D.; Min, S.; Takeuchi, Y. (2006) Recent advances in mechanical micromachining. CIRP Annals, 55(2): 745–768. doi:10.1016/j.cirp.2006.10.006
  • Dutta, S.; Sarma, D.K. (2022) Multi-response optimisation of machining parameters to minimise the overcut and circularity error during micro-EDM of nickel-titanium shape memory alloy. Advances in Materials and Processing Technologies, 1–21. doi:10.1080/2374068X.2022.2090787
  • Elnashar, M. (2010) Review article: immobilized molecules using biomaterials and nanobiotechnology. Journal of Biomaterials and Nanobiotechnology, 01(01): 61–77. doi:10.4236/jbnb.2010.11008
  • Farooq, M.U.; Ali Bhatti, H.; Asad, M.; Kumar, M.S.; Zahoor, S.; Khan, A.M. (2022) Surface generation on titanium alloy through powder-mixed electric discharge machining with the focus on bioimplant applications. The International Journal of Advanced Manufacturing Technology, 122(3-4): 1395–1411. doi:10.1007/s00170-022-09927-1
  • Fu, Y.; Miyamoto, T.; Natsu, W.; Zhao, W.; Yu, Z. (2016) Study on influence of electrode material on hole drilling in micro-EDM. Procedia CIRP, 42: 516–520. doi:10.1016/j.procir.2016.02.243
  • Gabor, R.; Cvrček, L.; Doubková, M.; Nehasil, V.; Hlinka, J.; Unucka, P.; Buřil, M.; Podepřelová, A.; Seidlerová, J.; Bačáková, L. (2022) Hybrid coatings for orthopaedic implants formed by physical vapour deposition and microarc oxidation. Materials & Design, 219: 110811. doi:10.1016/j.matdes.2022.110811
  • Gaikwad, M.U.; Krishnamoorthy, A.; Jatti, V.S. (2019) Investigation and optimization of process parameters in Electrical Discharge Machining (EDM) process for NiTi 60. Materials Research Express, 6(6): 065707. doi:10.1088/2053-1591/ab08f3
  • Gaikwad, V.; Kumar, V.; Jatti, S. (2018) Optimization of material removal rate during electrical discharge machining of cryo-treated NiTi alloys using taguchi’s method. Journal of King Saud University - Engineering Sciences, 30(3): 266–272. doi:10.1016/j.jksues.2016.04.003
  • Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants - a review. Progress in Materials Science, 54(3): 397–425. doi:10.1016/j.pmatsci.2008.06.004
  • George, J.; Chandan, R.; Manu, R.; Mathew, J. (2021) Experimental investigation of silicon powder mixed EDM using graphene and CNT nano particle coated electrodes. Silicon, 13(11): 3835–3851. doi:10.1007/s12633-020-00658-0
  • Ghiculescu, D.; Marinescu, N.; Pirnau, C. (2017) Some aspects of finite element modelling of ultrasonically aided micro-EDM of CoCr alloys. MATEC Web of Conferences 112 03005. doi:10.1051/matecconf/201711203005
  • Gradišar Centa, U.; Mihelčič, M.; Bobnar, V.; Remškar, M.; Slemenik Perše, L. (2022) The effect of PVP on thermal, mechanical, and dielectric properties in PVDF-HFP/PVP thin film. Coatings, 12(9): 1241. doi:10.3390/coatings12091241
  • Grover, T.; Pandey, A.; Tiwari Kumari, S.; Awasthi, A.; Singh, B.; Dixit, P.; Singhal, P.; Saxena, K.K. (2020) Role of titanium in bio implants and additive manufacturing: an overview. Materials Today: Proceedings, 26: 3071–3080. doi:10.1016/j.matpr.2020.02.636
  • Gurule, N.B.; Pansare, S.A. (2013) Potentials of micro-EDM. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 50–55. www.iosrjournals.org.
  • Hamidi, M.F.F.A.; W.S.W.; Harun, M.; Samykano; S.A.C. Ghani, Z.; Ghazalli, F.; Ahmad.; A.B.; Sulong. (2017) A review of biocompatible metal injection moulding process parameters for biomedical applications. Materials Science & Engineering. C, Materials for Biological applications 78 1263–1276. doi:10.1016/j.msec.2017.05.016
  • Heamawatanachai, S.; Solzbacher, F. (2009). Fabrication of Compliant High Aspect Ratio Silicon Microelectrode Arrays Using Micro-Wire Electrical Discharge Machining Fabrication of Compliant High Aspect Ratio Silicon Microelectrode Arrays Using Micro-Wire Electrical Discharge Machining. doi:10.1007/s00542-009-0792-7.
  • Herath, I.; Davies, J.; Will, G.; Tran, P.A.; Velic, A.; Sarvghad, M.; Islam, M.; Paritala, P.K.; Jaggessar, A.; Schuetz, M.; Chatterjee, K.; Yarlagadda, P.K. (2022) Anodization of medical grade stainless steel for improved corrosion resistance and nanostructure formation targeting biomedical applications. Electrochimica Acta, 416: 140274. doi:10.1016/j.electacta.2022.140274
  • Ho, K.H.; Newman, S.T. (2003) State of the art Electrical Discharge Machining (EDM). International Journal of Machine Tools and Manufacture, 43(13): 1287–1300. doi:10.1016/S0890-6955(03)00162-7
  • Hole, P.; Ashok, P.D.P.; Rajiv, B. (2020) Investigation of response parameters on vibration Assisted Micro-Edm on Ti – 6Al – 4V Alloy.
  • Hou, S.; Bai, J.; Tian, B.; Liu, H. (2022) Experimental investigation to improve the efficiency and surface integrity of deep micro-hole machined by micro-EDM. The International Journal of Advanced Manufacturing Technology, 123(7-8): 2249–2259. doi:10.1007/s00170-022-10272-6
  • Hourmand, M.; Sarhan, A.A.D.; Mohd, N. (2017) Development of new fabrication and measurement techniques of micro-electrodes with high aspect ratio for micro EDM using typical EDM machine. Measurement, 97: 64–78. doi:10.1016/j.measurement.2016.11.020
  • Huang, C.H.; Yang, A.B.; Hsu, C.Y. (2018) The optimization of micro EDM milling of Ti–6Al–4V using a grey taguchi method and its improvement by electrode coating. The International Journal of Advanced Manufacturing Technology, 96(9-12): 3851–3859. doi:10.1007/s00170-018-1841-0
  • Hung, W. N. P.; Corliss, M. (2019) Micromachining of advanced materials. In Micromachining, Z. Stanimirović and I. Stanimirović, (Eds.), 1–31. Rijeka: Intechopen. doi:10.5772/intechopen.89432.
  • Huu, Phan Nguyen, Muthuramalingam T, Dong Pham Van, Shailesh Shirguppikar, Dung Hoang Tien, Thien Nguyen Van, and Ly Nguyen Trong. 2022. Multi-objects optimization in µ-EDM Using AlCrNi-coated tungsten carbide electrode for Ti-6AL-4 V. The International Journal of Advanced Manufacturing Technology122 (5-6): 2267–2276. doi:10.1007/s00170-022-10022-8
  • Huynh, K-h.; Pham, X-h.; Kim, J.; Lee, S.H.; Chang, H.; Rho, W-y.; Jun, B-h (n.d) Synthesis, properties, and biological applications of metallic alloy nanoparticles. 1–29.
  • Ishfaq, K.; Rehman, M.; Wang, Y. (2022) Toward the targeted material removal with optimized surface finish during EDM for the repair applications in dies and molds. Arabian Journal for Science and Engineering, 48(3): 2653–2669. doi:10.1007/s13369-022-07006-x
  • Ivanov, A.; Lahiri, A.; Baldzhiev, V.; Trych‐wildner, A. (2021) Suggested research trends in the area of micro‐edm—study of some parameters affecting micro‐EDM. Micromachines, 12(10): 1184. doi:10.3390/mi12101184
  • Jahan, M.P.; Y.S.; Wong.; M.; Rahman. (2009b) A Study on the quality micro-hole machining of tungsten carbide by micro-EDM process using transistor and RC-type pulse generator. Journal of Materials Processing Technology, 209(4): 1706–1716. doi:10.1016/j.jmatprotec.2008.04.029
  • Jahan, M.P.; A., Bakar Md Ali Asad; M. Rahman, Y. San Wong; T.; Masaki. (2011) Micro-Electro Discharge Machining (ΜEDM). In Micro-Manufacturing: Design and Manufacturing of Micro-Products, 301–346. John Wiley & Sons. doi:10.1002/9781118010570.ch10.
  • Jahan, M.P.; Alavi, F. (2019) A Study on the surface composition and migration of materials and their effect on surface microhardness during micro-EDM of Ti-6Al-4V. Journal of Materials Engineering and Performance, 28(6): 3517–3530. doi:10.1007/s11665-019-04120-0
  • Jahan, M.P.; Rahman, M.; Wong, Y.S. (2014). Micro-Electrical Discharge Machining (Micro-EDM): Processes, Varieties, and Applications. Comprehensive Materials Processing (Vol. 11). Elsevier. doi:10.1016/B978-0-08-096532-1.01107-9
  • Jahan, M.P.; Wong, Y.S.; Rahman, M. (2009a) A study on the fine-finish die-sinking micro-EDM of tungsten carbide using different electrode materials. Journal of Materials Processing Technology, 209(8): 3956–3967. doi:10.1016/j.jmatprotec.2008.09.015
  • Jain, S.; Parashar, V. (2021) Critical review on the impact of EDM process on biomedical materials. Materials and Manufacturing Processes, 36(15): 1701–1724. doi:10.1080/10426914.2021.1942907
  • Jorge, J.R.P.; Barão, V.A.; Delben, J.A.; Faverani, L.P.; Queiroz, T.P.; Assunção, W.G. (2013) Titanium in dentistry: Historical development, state of the art and future perspectives. Journal of Indian Prosthodontic Society, 13(2): 71–77. doi:10.1007/s13191-012-0190-1
  • Jose, J.; Paul, L. (2022) Experimental analysis of the influence of discharge gap on EDM performance. Materials Today: Proceedings, 55: 394–398. doi:10.1016/j.matpr.2021.10.515
  • Joyce, K.; Fabra, G.T.; Bozkurt, Y.; Pandit, A. (2021) Bioactive potential of natural biomaterials: identification, retention and assessment of biological properties. Signal Transduction and Targeted therapy, 6(1): 122. doi:10.1038/s41392-021-00512-8
  • Jung, J.H.; Kwon, W.T. (2010) Optimization of EDM process for multiple performance characteristics using taguchi method and grey relational analysis. Journal of Mechanical Science and Technology, 24(5): 1083–1090. doi:10.1007/s12206-010-0305-8
  • Kadirvel, A.; Hariharan, P.; Gowri, S. (2013) Experimental investigation on the electrode specific performance in micro-EDM of die-steel. Materials and Manufacturing Processes, 28(4): 390–396. doi:10.1080/10426914.2013.763959
  • Kanmani Subbu, S.; Karthikeyan, G.; Ramkumar, J.; Dhamodaran, S. (2011) Plasma characterization of dry µ -EDM. The International Journal of Advanced Manufacturing Technology, 56(1-4): 187–195. doi:10.1007/s00170-011-3162-4
  • Kar, S.; Patowari, P.K. (2018) Electrode Wear phenomenon and its compensation in micro electrical discharge milling: A review. Materials and Manufacturing Processes, 33(14): 1491–1517. doi:10.1080/10426914.2018.1453144
  • Kaur, M.; Singh, K. (2019) Review on Titanium and titanium based alloys as biomaterials for orthopaedic applications. Materials Science & Engineering. C, Materials for Biological applications 102 844–862. doi:10.1016/j.msec.2019.04.064
  • Khoshaim, A.B.; Muthuramalingam, T.; Moustafa, E.B.; Elsheikh, A. (2023) Influences of tool electrodes on machinability of titanium α- β Alloy with ISO energy pulse generator in EDM Process. Alexandria Engineering Journal, 63: 465–474. doi:10.1016/j.aej.2022.07.059
  • Kibria, G.; Bhattacharyya, B. (2017) Microelectrical Discharge Machining of Ti-6Al-4V: Implementation of Innovative Machining Strategies. Microfabrication and Precision Engineering: Research and Development. Elsevier Ltd. doi:10.1016/B978-0-85709-485-8.00004-8
  • Kibria, G.; Sarkar, B.R.; Pradhan, B.B.; Bhattacharyya, B. (2010) Comparative study of different dielectrics for micro-EDM performance during microhole machining of Ti-6Al-4V alloy. The International Journal of Advanced Manufacturing Technology, 48(5-8): 557–570. doi:10.1007/s00170-009-2298-y
  • Kishawy, H.A.; Hosseini, A. (2019) Machining Difficult-to-Cut Materials: Basic Principles and Challenges.
  • Kowalczyk, M.; Niżankowski, C. (2017) Comparative analysis of machinability of nitinol alloy using weighted radar diagram. Management and Production Engineering Review, 8(4): 74–81. doi:10.1515/mper-2017-0038
  • Kumar, K.; Singh, V.; Katyal, P.; Sharma, N. (2019) EDM µ-drilling in Ti-6Al-7Nb: Experimental investigation and optimization using NSGA-II. The International Journal of Advanced Manufacturing Technology, 104(5-8): 2727–2738. doi:10.1007/s00170-019-04012-6
  • Kumar, L.; Kumar, K.; Chhabra, D. (2022) Experimental investigations of electrical discharge micro-drilling for Mg-Alloy and multi-response optimization using MOGA-ANN. CIRP Journal of Manufacturing Science and Technology, 38: 774–786. doi:10.1016/j.cirpj.2022.06.014
  • Kumar, R.; Singh, I. (2018) Productivity improvement of micro EDM process by improvised tool. Precision Engineering, 51: 529–535. doi:10.1016/j.precisioneng.2017.10.008
  • Kumar, S.; Singh, R.; Batish, A.; Singh, T.P. (2017) Modeling the tool wear rate in powder mixed electro-discharge machining of titanium alloys using dimensional analysis of cryogenically treated electrodes and workpiece. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 231(2): 271–282. doi:10.1177/0954408915593875
  • Kunčická, L.; Kocich, R.; Lowe, T.C. (2017) Advances in metals and alloys for joint replacement. Progress in Materials Science, 88: 232–280. doi:10.1016/j.pmatsci.2017.04.002
  • Kunieda, M.; Lauwers, B.; Rajurkar, K.P.; Schumacher, B.M. (2005) Advancing EDM through fundamental insight into the process. CIRP Annals, 54(2): 64–87. doi:10.1016/S0007-8506(07)60020-1
  • Kunieda, M.; Yoshida, M.; Taniguchi, N. (1997) Electrical discharge machining in gas. CIRP Annals, 46(1): 143–146. doi:10.1016/S0007-8506(07)60794-X
  • Kuriachen, B.; Mathew, J. (2016a) Effect of powder mixed dielectric on material removal and surface modification in microelectric discharge machining of Ti-6Al-4V. Materials and Manufacturing Processes, 31(4): 439–446. doi:10.1080/10426914.2015.1004705
  • Kuriachen, B.; Mathew, J. (2016b) Spark radius modeling of resistance-capacitance pulse discharge in micro-electric discharge machining of Ti-6Al-4V: An experimental study. The International Journal of Advanced Manufacturing Technology, 85(9-12): 1983–1993. doi:10.1007/s00170-015-7999-9
  • Lee, H.H.; Yang, M.Y.; Shin, W.C.; Ro, S.K.; Park, J.K. (2011) Compact high-precision optical sensor for three-dimensional tool-origin compensation. International Journal of Precision Engineering and Manufacturing, 12(3): 543–549. doi:10.1007/s12541-011-0068-x
  • Li, Z.; Bai, J.; Cao, Y.; Wang, Y.; Zhu, G. (2019) Fabrication of microelectrode with large aspect ratio and precision machining of micro-hole array by micro-EDM. Journal of Materials Processing Technology, 268: 70–79. doi:10.1016/j.jmatprotec.2019.01.009
  • Li, Z.; Tang, J.; Bai, J. (2020) A novel micro-EDM method to improve microhole machining performances Using Ultrasonic Circular Vibration (UCV) electrode. International Journal of Mechanical Sciences, 175:105574. doi:10.1016/j.ijmecsci.2020.105574
  • Lian, M.-Q.; Lei, J.-G.; Wu, X.-Y.; Luo, F.; Luo, H.-X.; Xu, B. (2022) Micro-EDM of 3D microstructure on micro-shaft based on the rotation of micro-shaft. The International Journal of Advanced Manufacturing Technology, 121(7-8): 5537–5548. doi:10.1007/s00170-022-09772-2
  • Liew, P.J.; Yan, J.; Kuriyagawa, T. (2014) Fabrication of deep micro-holes in reaction-bonded SiC by ultrasonic cavitation assisted micro-EDM. International Journal of Machine Tools and Manufacture, 76: 13–20. doi:10.1016/j.ijmachtools.2013.09.010
  • Lim, H.S.; Wong, Y.S.; Rahman, M.; Edwin Lee, M.K. (2003) A study on the machining of high-aspect ratio micro-structures using micro-EDM. Journal of Materials Processing Technology, 140(1-3): 318–325. doi:10.1016/S0924-0136(03)00760-X
  • Liu, Q.; Zhang, Q.; Zhu, G.; Wang, K.; Zhang, J.; Dong, C. (2016) Effect of electrode size on the performances of micro-EDM. Materials and Manufacturing Processes, 31(4): 391–396. doi:10.1080/10426914.2015.1059448
  • Liu, W.; Jia, Z.; Zou, S.; Zheng, X. (2014) A new measurement method of relative volume wear ratio based on discharge debris composition analysis in micro-EDM. Advances in Mechanical Engineering 6 479609. doi:10.1155/2014/479609
  • Liu, W.; Liu, S.; Wang, L. (2019) Surface modification of biomedical titanium alloy: micromorphology, microstructure evolution and biomedical applications. Coatings, 9(4): 249. doi:10.3390/coatings9040249
  • Ma, H.; Qin, G.; Dang, Z.; Qu, S.; Chen, L.; Geng, P. (2022) Interfacial microstructure evolution and mechanical properties of inertia friction welded aluminium alloy/stainless steel joint with preheat treatment. Materials Science and Engineering: A, 836(January): 142671. doi:10.1016/j.msea.2022.142671
  • Mahajan, A.; Sidhu, S.S. (2018) Surface modification of metallic biomaterials for enhanced functionality: a review. Materials Technology, 33(2): 93–105. doi:10.1080/10667857.2017.1377971
  • Mahajan, A.; Sidhu, S.S. (2019) In vitro corrosion and hemocompatibility evaluation of electrical discharge treated cobalt-chromium implant. Journal of Materials Research, 34(08): 1363–1370. doi:10.1557/jmr.2019.73
  • Maity, K.P.; Singh, R.K. (2012) An optimisation of micro-EDM operation for fabrication of micro-hole. The International Journal of Advanced Manufacturing Technology, 61(9-12): 1221–1229. doi:10.1007/s00170-012-4098-z
  • Manivannan, R.; Kumar, M.P. (2016) Multi-response optimization of micro-edm process parameters on AISI304 steel using TOPSIS. Journal of Mechanical Science and Technology, 30(1): 137–144. doi:10.1007/s12206-015-1217-4
  • Maradia, U.; Knaak, R.; Dal Busco, W.; Boccadoro, M.; Wegener, K. (2015) A strategy for low electrode wear in meso-micro-EDM. Precision Engineering, 42: 302–310. doi:10.1016/j.precisioneng.2015.06.005
  • Marashi, H.; Sarhan, A.A.D.; Maher, I.; Sayuti, M. (2017) Techniques to Improve EDM Capabilities: A Review. Comprehensive Materials Finishing (Vol. 1–3). Elsevier Ltd. doi:10.1016/B978-0-12-803581-8.09153-0
  • Maskrey, J.T.; Dugdale, R.A. (1966) The role of inclusions and surface contamination arc initiation at low pressures. British Journal of Applied Physics, 17(8): 1025–1034.
  • McDonnell, B. (2010) Jesters to the revolution - a history of Cartoon Archetypical Slogan Theatre (CAST), 1965 - 85. Theatre Notebook, 64(2): 96–111.
  • Meena, V.K.; Azad, M.S.; Singh, S.; Singh, N. (2017) Micro-EDM multiple parameter optimization for Cp titanium. The International Journal of Advanced Manufacturing Technology, 89(1-4): 897–904. doi:10.1007/s00170-016-9130-2
  • Mirzaeifar, R.; Gall, K.; Zhu, T.; Yavari, A.; Desroches, R. (2014) Structural transformations in NiTi shape memory alloy nanowires. Journal of Applied Physics, 115(19): 0–8. doi:10.1063/1.4876715
  • Mohd Jani, J.; Leary, M.; Subic, A.; Gibson, M.A. (2014) A review of shape memory alloy research, applications and opportunities. Materials & Design (1980-2015) 56: 1078–1113. doi:10.1016/j.matdes.2013.11.084
  • Morinaga, M. (2019) Titanium alloys. In A Quantum Approach to Alloy Design, 77–94. Elsevier. doi:10.1016/b978-0-12-814706-1.00005-4.
  • Narasimhan, J.; Yu, Z.; Rajurkar, K.P. (2005) Tool Wear Compensation and Path Generation in Micro and Macro EDM. Journal of Manufacturing Processes, 7(1): 75–82. doi:10.1016/S1526-6125(05)70084-0
  • Nas, E. (2022) Optimization of EDM Machinability of Hastelloy C22 Super Alloys.
  • Nasab, M.; Bahrami, M.R.;   Hassan.; B.; Bin Sahari. (2010) Metallic biomaterials of knee and Hip - a review. Trends in Biomaterials and Artificial Organs, 24(2): 69–82.
  • Navarro, M.; Michiardi, A.; Castaño, O.; Planell, J.A. (2008) Biomaterials in orthopaedics. Journal of the Royal Society, Interface, 5(27): 1137–1158. doi:10.1098/rsif.2008.0151
  • Naveen Anthuvan, R.; Krishnaraj, V. (2020) Effect of coated and treated Electrodes on Micro-EDM characteristics of Ti-6Al-4V. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(10): 1–16. doi:10.1007/s40430-020-02578-x
  • Nguyen Huu, P.; Nguyen Trong, L. (2023) Multi-objective optimization in micro-electrical discharge machining using titanium nitride coated WC electrode. International Journal on Interactive Design and Manufacturing (IJIDeM)17(1): 187–196. doi:10.1007/s12008-022-01121-7
  • Nguyen, H.P.; Van Dong, P.; Ngo, N.V. (2018) Application of TOPSIS to taguchi method for multi-characteristic optimization of electrical discharge machining with titanium powder mixed into dielectric fluid. The International Journal of Advanced Manufacturing Technology, 98(5-8): 1179–1198. doi:10.1007/s00170-018-2321-2
  • Niculescu, A.; Gabriela, C.; Chircov, A.C.;   Bîrcă.; A.M.; Grumezescu. (2021) Fabrication and applications of microfluidic devices: a review. International Journal of Molecular sciences, 22(4): 2011. doi:10.3390/ijms22042011
  • Palanikumar, K.; Davim, J.P. (2013) Electrical Discharge Machining: Study on Machining Characteristics of WC/Co Composites. Machining and Machine-Tools. Woodhead Publishing Limited. doi:10.1533/9780857092199.135
  • Paul, G.; North, G.T.R.; Bengal, W.; Ghatak, S.; Sarkar, S. (2011) Investigation on the effect of spark gap in dry µ-electro discharge machining of SiC-10BN nano-composite. International Journal of Manufacturing Technology, 24: 71–87.
  • Paul, G.; Roy, S.; Sarkar, S.; Hanumaiah, N. (2013). Investigations on influence of process variables on crater dimensions in micro-EDM of γ -titanium aluminide alloy in dry and oil dielectric media. The International Journal of Advanced Manufacturing Technology, 65:1009–17. doi:10.1007/s00170-012-4235-8.
  • Paul, L.; Jose, I.; Jose, J. (2021) Effect of discharge gap on EDM using desirability function analysis. Materials Today: Proceedings, 47: 5302–5307. doi:10.1016/j.matpr.2021.06.051
  • Pellegrini, G.; Ravasio, C. (2020) A sustainability index for the micro-EDM drilling process. Journal of Cleaner Production, 247: 119136. doi:10.1016/j.jclepro.2019.119136
  • Pellegrini, G.; Ravasio, C. (2023) Study of the law motion of the micro-EDM drilling process. Journal of Manufacturing and Materials Processing, 7(5): 165. doi:10.3390/jmmp7050165
  • Pesode, P.; Barve, S. (2023) A review—metastable β titanium alloy for biomedical applications. Journal of Engineering and Applied Science, 70(1): 1–36. doi:10.1186/s44147-023-00196-7
  • Pham, D.T.; Dimov, S.S.; Bigot, S.; Ivanov, A.; Popov, K. (2004) Micro-EDM - recent developments and research issues. Journal of Materials Processing Technology, 149(1-3): 50–57. doi:10.1016/j.jmatprotec.2004.02.008
  • Philip, J.T.; Mathew, J.; Kuriachen, B. (2021) Transition from EDM to PMEDM – impact of suspended particulates in the dielectric on ti6al4v and other distinct material surfaces: A review. Journal of Manufacturing Processes, 64: 1105–1142. doi:10.1016/j.jmapro.2021.01.056
  • Pilligrin, J.C.; Asokan, P.; Jerald, J.; Kanagaraj, G. (2018) Effects of electrode materials on performance measures of electrical discharge micro-machining. Materials and Manufacturing Processes, 33(6): 606–615. doi:10.1080/10426914.2017.1364757
  • Prabhu, S.; Vinayagam, B.K. (2016) Multiresponse optimization of EDM process with nanofluids using topsis method and genetic acronyms : 1. Introduction Electrical Discharge Machining (EDM) is a machining method primarily used for hard metals or those that would be very difficult to mach. Lxiii
  • Prakash, D.; Tariq, M.; Davis, R.; Singh, A.; Debnath, K. (2021) Materials today : proceedings influence of cryogenic treatment on the performance of micro-EDM tool electrode in machining of magnesium alloy AZ31B. Materials Today: Proceedings, 39:1198–1201. doi:10.1016/j.matpr.2020.03.589
  • Prakash, V.; Kumar, P.; Singh, P.K.; Hussain, M.; Das, A.K.; Chattopadhyaya, S. (2019) Micro-electrical discharge machining of difficult-to-machine materials: a review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 233(2): 339–370. doi:10.1177/0954405417718591
  • Prasad, K.; Bazaka, O.; Chua, M.; Rochford, M.; Fedrick, L.; Spoor, J.; Symes, R.; Tieppo, M.; Collins, C.; Cao, A.; Markwell, D.; Ostrikov, K.K.; Bazaka, K. (2017) Metallic biomaterials: current challenges and opportunities. Materials (Basel, Switzerland)10(8): 884. doi:10.3390/ma10080884
  • Praveen, L.; P.; Geeta Krishna, L.; Venugopal, N.E.C. Prasad. (2018) Effects of pulse on and off time and electrode types on the material removal rate and tool wear rate of the Ti-6Al-4V Alloy using EDM machining with reverse polarity. IOP Conference Series: Materials Science and Engineering, 330(1): 012083. doi:10.1088/1757-899X/330/1/012083
  • Prihandana, G.S.; Mahardika, M.; Hamdi, M.; Wong, Y.S.; Mitsui, K. (2009) Effect of micro-powder suspension and ultrasonic vibration of dielectric fluid in micro-EDM processes-taguchi approach. International Journal of Machine Tools and Manufacture, 49(12-13): 1035–1041. doi:10.1016/j.ijmachtools.2009.06.014
  • Prihandana, G.S.; Sriani, T.; Mahardika, M.; Hamdi, M.; Miki, N.; Wong, Y.S.; Mitsui, K. (2014) Application of powder suspended in dielectric fluid for fine finish micro-EDM of inconel 718. The International Journal of Advanced Manufacturing Technology, 75(1-4): 599–613. doi:10.1007/s00170-014-6145-4
  • Quarto, M.; D’Urso, G.; Giardini, C.; Maccarini, G. (2020) FEM model development for the simulation of a micro-drilling EDM process. The International Journal of Advanced Manufacturing Technology, 106(7-8): 3095–3104. doi:10.1007/s00170-019-04750-7
  • Quarto, M.; D'Urso, G.; Giardini, C. (2022) Micro-EDM optimization through particle swarm algorithm and artificial neural network. Precision Engineering, 73: 63–70. doi:10.1016/j.precisioneng.2021.08.018
  • Rahul,  Mishra, Dileep Kumar, Datta, Saurav, Masanta, Manoj, 2018. Effects of tool electrode on EDM performance of Ti-6Al-4V. Silicon 10 (5): 2263–2277. doi:10.1007/s12633-018-9760-0
  • Rajhi, W.; Kolsi, L.; Abbassi, R.; Jerbi, H.; Kchaou, M. (2022) Estimation of MRR and thermal stresses in EDM process : a comparative numerical study. The International Journal of Advanced Manufacturing Technology, 121(9-10): 7037–7055. doi:10.1007/s00170-022-09806-9
  • Rajurkar, K.P.; Levy, G.; Malshe, A.; Sundaram, M.M.; McGeough, J.; Hu, X.; Resnick, R.; DeSilva, A. (2006) Micro and nano machining by electro-physical and chemical processes. CIRP Annals, 55(2): 643–666. doi:10.1016/j.cirp.2006.10.002
  • Rasheed, M.S.; Abidi, M.H.; El-Tamimi, A.M.; Al-Ahmari, A.M. (2013) Investigation of micro-EDM input parameters on various outputs in machining Ni-Ti shape memory alloy using full factorial design. Advanced Materials Research816-817: 173–179. doi:10.4028/www.scientific.net/AMR.816-817.173
  • Ratner, B.D.; Hoffman, A.S.; Schoen, F.J.; Lemons, J.E. (2013) Introduction - Biomaterials Science: An Evolving, Multidisciplinary Endeavor. Biomaterials Science: An Introduction to Materials. 3rd ed. Elsevier. doi:10.1016/B978-0-08-087780-8.00153-4
  • Ren, D.; Xi, Y.; Yan, J.; Zan, X.; Luo, L.; Wu, Y. (2022) Surface damage and microstructure evolution of yttria particle-reinforced tungsten plate during transient laser thermal shock. Metals, 12(4): 686. doi:10.3390/met12040686
  • Ronoh, K.; Fawaeer, S.H.; Holcman, V.; Knápek, A.; Sobola, D. (2023) Comprehensive characterization of different metallic thin films on highly oriented pyrolytic graphite substrate. Vacuum, 215:112345. doi:10.1016/j.vacuum.2023.112345
  • Rony, L.; Lancigu, R.; Hubert, L. (2018) Intraosseous metal implants in orthopedics: a review. Morphologie: bulletin de L'Association Des anatomists, 102(339): 231–242. doi:10.1016/j.morpho.2018.09.003
  • Sabzehmeidani, M.M.; Kazemzad, M. (2023) Recent advances in surface-mounted metal–organic framework thin film coatings for biomaterials and medical applications: a review. Biomaterials research, 27(1): 115. doi:10.1186/s40824-023-00454-y
  • Safranski, D.; Dupont, K.; Gall, K. (2020) Pseudoelastic NiTiNOL in orthopaedic applications. Shape Memory and Superelasticity, 6(3): 332–341. doi:10.1007/s40830-020-00294-y
  • Sahoo, S.; Sahoo, G.; Jeong, S.M.; Rout, C.S. (2022) A review on supercapacitors based on plasma enhanced chemical vapor deposited vertical graphene arrays. Journal of Energy Storage, 53: 105212. doi:10.1016/j.est.2022.105212
  • Sahu, A.K.; Malhotra, J.; Jha, S. (2022) Laser-Based Hybrid Micromachining Processes: A Review. Optics & Laser Technology, 146: 107554. doi:10.1016/j.optlastec.2021.107554
  • Saleh, T.; Dahmardeh, M.; Bsoul, A.; Nojeh, A.; Takahata, K. (2014) Field-emission-assisted approach to dry micro-electro-discharge machining of carbon- nanotube forests field-emission-assisted approach to dry micro-electro-discharge machining of carbon-nanotube forests. 103305 (2011). doi:10.1063/1.3663438
  • Saleh, T.; Dahmardeh, M.; Nojeh, A.; Takahata, K. (2012) Dry micro-electro-discharge machining of carbon-nanotube forests using sulphur-hexafluoride. Carbon, 52: 288–295. doi:10.1016/j.carbon.2012.09.030
  • Salim, S.A.; Salaheldin, T.A.; Elmazar, M.M.; Abdel-Aziz, A.F.; Kamoun, E.A. (2022) Smart biomaterials for enhancing cancer therapy by overcoming tumor hypoxia: a review. RSC advances, 12(52): 33835–33851. doi:10.1039/d2ra06036a
  • Sankaran, K.; Mishra, R.S. (2017) Chapter-4_Aluminium Alloys_RS Mishra. In Metallurgy and Design of Alloys with Hierarchical Microstructures. Elsevier. doi:10.1016/B978-0-12-812068-2.00004-7.
  • Santavirta, S.; Konttinen, Y.T.; Lappalainen, R.; Anttila, A.; Goodman, S.B.; Lind, M.; Smith, L.; Takagi, M.; Gómez-Barrena, E.; Nordsletten, L.; Xu, J.-W. (1998) Materials in total joint replacement. Current Orthopaedics, 12(1): 51–57. doi:10.1016/S0268-0890(98)90008-1
  • Santosh, S.; Kevin Thomas, J.; Pavithran, M.; Nithyanandh, G.; Ashwath, J. (2022) An Experimental analysis on the influence of CO2 Laser machining parameters on a copper-based shape memory alloy. Optics & Laser Technology 153 108210. doi:10.1016/j.optlastec.2022.108210
  • Sapkal, S.U.; Jagtap, P.S. (2018) Optimization of micro EDM drilling process parameters for titanium alloy by rotating electrode. Procedia Manufacturing, 20: 119–126. doi:10.1016/j.promfg.2018.02.017
  • Sawant, S.N.; Patil, S.K.; Unune, D.R.; Nazare, P.; Wojciechowski, S. (2023) Effect of Copper, Tungsten Copper and Tungsten Carbide Tools on Micro-Electric Discharge Drilling of Ti e 6Al e 4V Alloy. Journal of Materials Research and Technology, 24: 4242–4257. doi:10.1016/j.jmrt.2023.04.067
  • Search, Home, Collections Journals, About Contact, My Iopscience, and I P Address. n.d. E of Inclusions and Surface Contamination Arc Initiation at IOW Pressures. 1025.
  • Senturia, S.D. (2001) Microsystem design. microsystem design. Springer. doi:10.1007/b117574.
  • Shayesteh Moghaddam, N.; Taheri Andani, M.; Amerinatanzi, A.; Haberland, C.; Huff, S.; Miller, M.; Elahinia, M.; Dean, D. (2016) Metals for bone implants: safety, design, and efficacy. Biomanufacturing Reviews, 1(1): 1–16. doi:10.1007/s40898-016-0001-2
  • Shirguppikar, S.S.; Patil, M.S. (2022) Experimental investigation on micro-electro discharge machining process using tungsten carbide and titanium nitride-coated micro-tool electrode for machining of Ti-6Al-4V. Advances in Materials and Processing Technologies, 8(sup1): 187–204. doi:10.1080/2374068X.2020.1833399
  • Shishkovsky, I.V.; Lebedev, P.N. (2011). Chemical and physical vapor deposition methods for nanocoatings. nanocoatings and ultra-thin films. Woodhead Publishing Limited. doi:10.1533/9780857094902.1.57
  • Siewert, S.; Falke, K.; Luderer, F.; Reske, T.; Schmidt, W.; Pfensig, S.; Stiehm, M.; Hinze, U.; Chichkov, B.; Grabow, N.; Guthoff, R.; Schmitz, K.-P. (2017) Development of a biodegradable flow resisting polymer membrane for a novel glaucoma microstent. Biomedical Microdevices, 19(4) . doi:10.1007/s10544-017-0218-8
  • Sims, I. (2013) Book review: The history of stainless steel. Proceedings of the Institution of Civil Engineers - Construction Materials, 166(1): 57–57. doi:10.1680/coma.11.00066
  • Singh, M.; Saxena, P.; Ramkumar, J.; Rao, R.V. (2020) Multi-Spark numerical simulation of the micro-EDM process: an extension of a single-spark numerical Study. The International Journal of Advanced Manufacturing Technology, 108(9-10): 2701–2715. doi:10.1007/s00170-020-05566-6
  • Singh, N.; Bharti, P.S. (2022) Multi-response optimisation of micro-EDM drilling of Ti-5.6Al-3.6V using grey-fuzzy logic based approach. Advances in Materials and Processing Technologies, 0(0): 1–12. doi:10.1080/2374068X.2022.2096832
  • Singh, P.; Yadava, V.; Narayan, A. (2018) Parametric study of ultrasonic-assisted hole sinking micro-EDM of titanium alloy. The International Journal of Advanced Manufacturing Technology, 94(5-8): 2551–2562. doi:10.1007/s00170-017-1051-1
  • Singh, R.; Tiwari, T.; Dvivedi, A.; Kumar, P. (2022) Assessing the performance of air, argon, and oxygen as dielectric mediums during dry-micro- EDM of Ti6Al4V Alloy : a comparative study. Materials and Manufacturing Processes, 38(7): 859–877. doi:10.1080/10426914.2022.2149782
  • Siva, M.; Arunkumar, N.; Subramanian, M.; Elakkiyadasan, R. (2023) Influence of micro-electrical discharge machining parameters on the surface morphology of the nickel-coated electrode. Materials and Manufacturing Processes, 38(1): 89–104. doi:10.1080/10426914.2022.2105869
  • Sivakumar, K.; Sai Prasanna Kumar, J.V.; Loganathan, K.; Mugendiran, V.; Maridurai, T.; Suresh, K. (2022) Machining characteristics of silane-treated wheat husk biosilica in deionized water dielectric on EDM drilling of Ti-6Al-4 V alloy. Biomass Conversion and Biorefinery, 14(1): 199–206. doi:10.1007/s13399-022-02308-4
  • Sivaprakasam, P.; Udaya Prakash, J.; Hariharan, P. (2022) Enhancement of material removal rate in magnetic field-assisted micro electric discharge machining of aluminium matrix composites. International Journal of Ambient Energy, 43(1): 584–589. doi:10.1080/01430750.2019.1653979
  • Skrabalak, G.; Kozak, J. (2011) Modeling and Experimental investigations of Dry Electrical Discharge Machining (DEDM). 103. doi:10.1063/1.3649940
  • Sobczak, M.; Kędra, K. (2022) Biomedical polyurethanes for anti-cancer drug delivery systems: A brief, comprehensive review. International Journal of Molecular sciences, 23(15): 8181. doi:10.3390/ijms23158181
  • Somashekhar, K.P.; Ramachandran, N.; Mathew, J. (2010) Optimization of material removal rate in micro-EDM using artificial neural network and genetic algorithms. Materials and Manufacturing Processes, 25(6): 467–475. doi:10.1080/10426910903365760
  • Staiger, M.P.; Pietak, A.M.; Huadmai, J.; Dias, G. (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials, 27(9): 1728–1734. doi:10.1016/j.biomaterials.2005.10.003
  • Stephen, L. (2020) Titanium dioxide versatile solid crystalline: an overview. In Assorted Dimensional Reconfigurable Materials, 1–16. Books on Demand. doi:10.5772/intechopen.92056.
  • Straka, Ľ.; Hašová, S. (2018) Optimization of material removal rate and tool wear rate of cu electrode in die-sinking EDM of tool steel. The International Journal of Advanced Manufacturing Technology, 97(5-8): 2647–2654. doi:10.1007/s00170-018-2150-3
  • Subbian, K.S.; Janakarajan, R. (2011) Plasma Temperature and Electron Density of Dry µ -EDM on Stainless Steel and Silicon : A Comparison. doi:10.20965/ijat.2011.p0045
  • Sultan, T.; Kumar, A.; Gupta, R.D. (2014) Material removal rate, electrode wear rate, and surface roughness evaluation in die sinking edm with hollow tool through response surface methodology. International Journal of Manufacturing Engineering, 2014: 1–16. doi:10.1155/2014/259129
  • Suresh, P.; Venkatesan, R.; Sekar, T.; Elango, N.; Sathiyamoorthy, V. (2014) Optimization of intervening variables in MicroEDM of SS 316L using a genetic algorithm and response-surface methodology. Strojniški Vestnik – Journal of Mechanical Engineering, 60(10): 656–664. doi:10.5545/sv-jme.2014.1665
  • Sushil Kumar Choudhary, R.S.J. (2017) Review Study and Importance of Micro Electric Discharge Machining. Chemical and Process Engineering Research, 50: 14–21.
  • Sypniewska, M.; Szczesny, R.; Skowronski, L.; Kamedulski, P.; Gondek, E.; Apostoluk, A.; Derkowska-Zielinska, B. (2023) Optical and morphological properties of ZnO and Alq3 incorporated polymeric thin layers fabricated by the dip-coating method. Applied Nanoscience) 13(7): 4903–4912. doi:10.1007/s13204-022-02647-8
  • Szostak, M. (n.d) Advances in Manufacturing Vol. 4.
  • Takahata, K. (2009) Micro-electro-discharge machining technologies for MEMS. In Micro Electronic and Mechanical Systems. Intechopen. doi:10.5772/7009.
  • Takahata, K. (2012). Micro Electronic and Mechanical Systems. doi:10.5772/121.
  • Talha, M.; Behera, C.K.; Sinha, O.P. (2013) A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications. Materials Science & Engineering. C, Materials for Biological applications, 33(7): 3563–3575. doi:10.1016/j.msec.2013.06.002
  • Tang, G.; Liu, Z.; Liu, Y.; Yu, J.; Wang, X.; Tan, Z.; Ye, X. (2021) Recent trends in the development of bone regenerative biomaterials. Frontiers in Cell and Developmental biology, 9: 665813. doi:10.3389/fcell.2021.665813
  • Tiwary, A.P.; Pradhan, B.B.; Bhattacharyya, B. (2015) Study on the influence of micro-EDM process parameters during machining of Ti–6Al–4V superalloy. The International Journal of Advanced Manufacturing Technology, 76(1-4): 151–160. doi:10.1007/s00170-013-5557-x
  • Tiwary, A.P.; Pradhan, B.B.; Bhattacharyya, B. (2018) Investigation on the effect of dielectrics during micro-electro-discharge machining of Ti-6Al-4V. The International Journal of Advanced Manufacturing Technology, 95(1-4): 861–874. doi:10.1007/s00170-017-1231-z
  • Tong, H.; Li, Y.; Wang, Y.; Yu, D. (2008) Servo scanning 3D micro-EDM based on macro/micro-dual-feed spindle. International Journal of Machine Tools and Manufacture, 48(7-8): 858–869. doi:10.1016/j.ijmachtools.2007.11.008
  • Transactions ECS and the Electrochemical Society. (2009) Industrial applications of atomic layer deposition. ECS Transactions, 25(8): 641–652.
  • Trigwell, S.; Hayden, R.D.; Nelson, K.F.; Selvaduray, G. (1998) Effects of surface treatment on the surface chemistry of NiTi alloy for biomedical applications. Surface and Interface Analysis, 26(7): 483–489. doi:10.1002/(SICI)1096-9918(199806)26:7<483::AID-SIA388>3.0.CO;2-5
  • Tsai, Y-y.; Masuzawa, T. (2004). An Index to Evaluate the Wear Resistance of the Electrode in Micro-EDM. Journal of Materials Processing Technology, 149(1): 304–9. doi:10.1016/j.jmatprotec.2004.02.043
  • Venezuela, J.; Dargusch, M.S. (2019) The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review. Acta biomaterialia 87 1–40. doi:10.1016/j.actbio.2019.01.035
  • Verma, V.; Sajeevan, R. (2015) Multi process parameter optimization of diesinking edm on titanium alloy (Ti6Al4V) using taguchi approach. Materials Today: Proceedings ,2(4-5): 2581–2587. doi:10.1016/j.matpr.2015.07.212
  • Voisin, T.; Baptiste Forien, J.; Perron, A.; Aubry, S.; Bertin, N.; Samanta, A.; Baker, A.; Wang, Y.M. (2021) New insights on cellular structures strengthening mechanisms and thermal stability of an austenitic stainless steel fabricated by laser powder-bed-fusion. Acta Materialia, 203: 116476. doi:10.1016/j.actamat.2020.11.018
  • Warlimont, H. (2018). Titanium and Titanium Alloys. Springer Handbooks. . doi:10.1007/978-3-319-69743-7_7
  • Weinert, K.; Inasaki, I.; Sutherland, J.W.; Wakabayashi, T. (2004) Dry machining and minimum quantity lubrication. CIRP Annals, 53(2): 511–537. doi:10.1016/S0007-8506(07)60027-4
  • Wheeler, H.A. (1942) “Formulas the Skin Effect.” Proceedings of IRE 299–311.
  • Williams, D.E.; de Vries, P.; Namen, A.E.; Widmer, M.B.; Lyman, S.D. (1992) The steel factor. Developmental biology, 151(2): 368–376. doi:10.1016/0012-1606(92)90176-h
  • Winkler, T.; Sass, F.A.; Duda, G.N.; Schmidt-Bleek, K. (2018) A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: the unsolved challenge. Bone & Joint research, 7(3): 232–243. doi:10.1302/2046-3758.73.BJR-2017-0270.R1
  • Xiao, Y.J.; Zhang, Y.J.; Liang, Z.J.; Yue, T.M.; Guo, Z.N.; Liu, J.W.; Chen, X.L. (2021) Fabrication of a superhydrophobic mesh via magnetically aided electrode electric discharge machining. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 612: 125963. doi:10.1016/j.colsurfa.2020.125963
  • Xu, B.; Chen, S-g.; Liang, X.; Lei, J-g.; Shi, H-y.; Fu, L-y.; Yang, J.; Peng, T-j.; Zhao, H.; Zhu, L-k (2020) Recast layer removal of 304 stainless steel by combining micro-EDM with negative polarity micro-EDM. The International Journal of Advanced Manufacturing Technology, 107(11-12): 4713–4723. doi:10.1007/s00170-020-05312-y
  • Xu, B.; Guo, K.; Kuan Zhu, L.; Yu Wu, X.; Guo Lei, J.; Zhao, H.; Tang, Y.; Liang, X. (2019) The wear of foil queue microelectrode in 3D micro-EDM. The International Journal of Advanced Manufacturing Technology, 104(5-8): 3107–3117. doi:10.1007/s00170-019-04234-8
  • Yadukrishna, P.S.; Manesh, K.K. 2022. Plasma Characterization and Parametric Optimization of Ultrasonic Vibration assisted Micro EDM of Nitinol Proceedings of the International Conference on Systems, Energy and Environment 2022 (ICSEE 2022), Available at SSRN: https://ssrn.com/abstract=4297126 or doi:10.2139/ssrn.4297126.
  • Yan, B.H.; Huang, S.H.; Huang, F.Y. (2006) Biing Hwa Yan · Sheng Ho Huang · Fuang Yuan Huang bending strength analysis of micro WC-Shaft manufactured by micro electro-discharge machining. The International Journal of Advanced Manufacturing Technology, 29(7-8): 695–706. doi:10.1007/s00170-005-2565-5
  • Yan, M.T.; Lin, S.S. (2011) Process planning and electrode wear compensation for 3D micro-EDM. The International Journal of Advanced Manufacturing Technology, 53(1-4): 209–219. doi:10.1007/s00170-010-2827-8
  • Yeo, S.H.; Yap, G.G. (2001) A feasibility study on the micro electro-discharge machining process for photomask fabrication. International Journal of Advanced Manufacturing Technology, 18(1): 7–11. doi:10.1007/PL00003950
  • Yoshlda, M. (n.d) Tool Electrode, no. 2: 2–5.
  • Youssef, H.; El-Hofy, H. (2020). Non-Traditional Machining Processes. Non-Traditional and Advanced Machining Technologies. . doi:10.1201/9781003055310-2
  • Yu, Z.Y.; Masuzawa, T.; Fujino, M. (1998) Micro-EDM for three-dimensional cavities - development of uniform wear method. CIRP Annals, 47(1): 169–172. doi:10.1016/S0007-8506(07)62810-8
  • Yu, Z.Y.; Rajurkar, K.P.; Shen, H. (2002) High aspect ratio and complex shaped blind micro holes by micro EDM. CIRP Annals, 51(1): 359–362. doi:10.1016/S0007-8506(07)61536-4
  • Zhang, J.; Li, Y.; Cao, K.; Chen, R. (2022a) Advances in atomic layer deposition. Nanomanufacturing and Metrology, 5(3): 191–208. doi:10.1007/s41871-022-00136-8
  • Zhang, J.; Zimmer, J.W.; Howe, R.T.; Maboudian, R. (2008) Characterization of boron-doped micro- and nanocrystalline diamond films deposited by wafer-scale hot filament chemical vapor deposition for MEMS applications. Diamond and Related Materials, 17(1): 23–28. doi:10.1016/j.diamond.2007.09.010
  • Zhang, S.; Zhang, W.; Wang, P.; Liu, Y.; Ma, F.; Yang, D.; Sha, Z. (2019) Simulation of material removal process in EDM with composite tools. Advances in Materials Science and Engineering, 2019: 1–11. doi:10.1155/2019/1321780
  • Zhang, W.; Wang, M.; Zhang, Y. (2022b) Study on debris evacuation of EDM small hole processing on titanium alloy. The International Journal of Advanced Manufacturing Technology, 121(3-4): 2335–2341. doi:10.1007/s00170-022-09487-4
  • Zhu, Z.; Guo, D.; Xu, J.; Lin, J.; Lei, J.; Xu, B.; Wu, X.; Wang, X. (2020) Processing characteristics of micro electrical discharge machining for surface modification of TiNi shape memory alloys using a TiC powder dielectric. Micromachines, 11(11): 1018. doi:10.3390/mi11111018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.