Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 1
293
Views
16
CrossRef citations to date
0
Altmetric
ARTICLES

Novel hydrolytic extremely halotolerant alkaliphiles from mature landfill leachate with key involvement in maturation process

, , , &
Pages 64-73 | Received 25 May 2016, Accepted 04 Aug 2016, Published online: 11 Oct 2016
 

ABSTRACT

Mature landfill leachate is a heavily-polluted wastewater due to its recalcitrant nature of organic matter, and high ammonia and salt content. Despite the moderate saline and alkaline nature of this habitat, no attention has been paid to the isolation and functional role of extremophiles in such environment. In this work, a total of 73 and 29 bacterial strains were isolated by using alkaline and saline media, respectively, while bacteria from mature landfill leachate growing in these media were enumerated as 1.5 ± 0.1 (×108) and 5.8 ± 0.9 (×108) cfu/L. Based on their pH and salt ranges and optima for growth, all bacterial isolates were halotolerant alkaliphiles (either facultative or obligate), with the majority of them being extremely halotolerant bacteria. These halotolerant alkaliphiles were classified into 14 operational taxonomic units (OTUs). Of these, 12 are placed within known halophilic and alkaliphilic species of the genera Dietzia, Glycocaulis, Halomonas, Marinobacter, Piscibacillus and Rhodobacter, while the remaining OTUs represented two novel phylogenetic linkages among the families Cyclobacteriaceae and Rhodobacteraceae. Examination of their hydrolytic ability through the performance of lipase, protease and β-glucosidase assays using landfill leachate as the growth substrate revealed that all halotolerant alkaliphiles isolated exhibited extremely high lipolytic activities (up to 78,800 U g−1 protein), indicating a key involvement of extremophilic microbiota at the late landfill maturation stage. The wide extremely lipolytic halotolerant alkaliphilic community identified also makes mature landfill leachate an ideal microbial pool for the isolation of novel extremophiles of biotechnological interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.