Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 1
293
Views
16
CrossRef citations to date
0
Altmetric
ARTICLES

Novel hydrolytic extremely halotolerant alkaliphiles from mature landfill leachate with key involvement in maturation process

, , , &
Pages 64-73 | Received 25 May 2016, Accepted 04 Aug 2016, Published online: 11 Oct 2016

References

  • Lema, J.M.; Mendez, R.; Blazquez, R. Characteristics of landfill leachates and alternatives for their treatment: A review. Water Air Soil Pollut. 1988, 40, 223–250.
  • Fernandes, A.; Pacheco, M.J.; Ciríaco, L.; Lopes, A. Review on the electrochemical processes for the treatment of sanitary landfill leachates: Present and future. Appl. Catal. B 2015, 176–177, 183–200.
  • Schiopu, A.-M.; Gavrilescu, M. Options for the treatment and management of municipal landfill leachate: Common and specific issues. Clean—Soil Air Water 2010, 38, 1101–1110.
  • Christensen, T.H.; Kjeldsen, P.; Bjerg, P.L.; Jensen, D.L.; Christensen, J.B.; Baun, A.; Albrechtsen, H.-J.; Heron, G. Biogeochemistry of landfill leachate plumes. Appl. Geochem. 2001, 16, 659–718.
  • Lopez, A.; Pagano, M.; Volpe, A.; Di Pinto, A.C. Fenton's pre-treatment of mature landfill leachate. Chemosphere 2004, 54, 1005–1010.
  • Renou, S.; Givaudan, J.G.; Poulain, S.; Dirassouyan, F.; Moulin, P. Landfill leachate treatment: Review and opportunity. J. Hazard. Mater. 2008, 150, 468–493.
  • Rothschild, L.J.; Mancinelli, R.L. Life in extreme environments. Nature 2001, 409, 1092–1101.
  • Horikoshi, K. Alkaliphiles: Some applications of their products for biotechnology. Microbiol. Mol. Biol. Rev. 1999, 63, 735–750.
  • Ntougias, S.; Russell, N.J. Alkalibacterium olivoapovliticus gen. nov., sp. nov., a new obligately alkaliphilic bacterium isolated from edible-olive wash-waters. Int. J. Syst. Evol. Microbiol. 2001, 51, 1161–1170.
  • Oren, A. Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications. J. Ind. Microbiol. Biotechnol. 2002, 28, 56–63.
  • Ventosa, A.; Nieto, J.J.; Oren, A. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 1998, 62, 504–544.
  • Margesin, R.; Schinner, F. Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 2001, 5, 73–83.
  • Kushner, D.J. Growth and nutrition of halophilic bacteria. In The Biology of Halophilic Bacteria; Vreeland, R.H., Hochstein, L.I., Eds.; CRC Press: Boca Raton, FL, 1993; 87–103.
  • Grant, W.D.; Mwatha, W.E.; Jones, B.E. Alkaliphiles: Ecology, diversity and applications. FEMS Microbiol. Rev. 1990, 75, 255–269.
  • Roadcap, G.S.; Sanford, R.A.; Jin, Q.; Pardinas, J.R.; Bethke, C.M. Extremely alkaline (pH >12) ground water hosts diverse microbial community. Ground Water 2006, 44, 511–517.
  • Cayol, J.-L.; Ollivier, B.; Alazard, D.; Amils, R.; Godfroy, A.; Piette, F.; Prieur, D. The extreme conditions of life on the planet and exobiology. In Environmental Microbiology: Fundamentals and Applications; Bertrand, J.-C., Caumette, P., Lebaron, P., Matheron, R., Normand, P., Sime-Ngando, T., Eds.; Springer: Dordrecht, 2015; 353–394.
  • Zhao, B.; Yan, Y.; Chen, S. How could haloalkaliphilic microorganisms contribute to biotechnology? Can. J. Microbiol. 2014, 60, 717–727.
  • Clesceri, L.S.; Greenberg, A.E.; Eaton, A.D. Standard Methods for the Examination of Water and Wastewater; American Public Health Association (APHA): Washington, DC, 1998.
  • Huang, X.; Madan, A. CAP3: A DNA sequence assembly program. Genome Res. 1999, 9, 868–877.
  • Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; Thompson, J.D.; Higgins, D.G. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, art. no. 539.
  • Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729.
  • Jukes, T.H.; Cantor, C.R. Evolution of protein molecules. In Mammalian Protein Metabolism; Munro, H.N., Ed.; Academic Press: New York, 1969; 21–132.
  • Saitou, N., Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425.
  • Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254.
  • Gessesse, A.; Dueholm, T.; Petersen, S.B.; Nielsen, P.H. Lipase and protease extraction from activated sludge. Water Res. 2003, 37, 3652–3657.
  • Benitez, E.; Sainz, H.; Nogales, R. Hydrolytic enzyme activities of extracted humic substances during the vermicomposting of a lignocellulosic olive waste. Bioresour. Technol. 2005, 96, 785–790.
  • Yoon, J.-H.; Lee, K.-C.; Kho, Y.H.; Kang, K.H.; Kim, C.-J.; Park, Y.-H. Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int. J. Syst. Evol. Microbiol. 2002, 52, 123–130.
  • Romano, I.; Giordano, A.; Lama, L.; Nicolaus, B.; Gambacorta, A. Halomonas campaniensis sp. nov., a haloalkaliphilic bacterium isolated from a mineral pool of Campania Region, Italy. Syst. Appl. Microbiol. 2005, 28, 610–618.
  • Pan, J.; Abulaizi, A.; Sun, C.; Cheng, H.; Wu, M. Draft genomic DNA sequence of strain Halomonas sp. FS-N4 exhibiting high catalase activity. Mar. Genomics 2014, 18, 119–121.
  • Romano, I.; Lama, L.; Nicolaus, B.; Poli, A.; Gambacorta, A.; Giordano, A. Halomonas alkaliphila sp. nov., a novel halotolerant alkaliphilic bacterium isolated from a salt pool in Campania (Italy). J. Gen. Appl. Microbiol. 2006, 52, 339–348.
  • Gauthier, M.J.; Lafay, B.; Christen, R.; Fernandez, L.; Acquaviva, M.; Bonin, P.; Bertrand, J.-C. Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int. J. Syst. Bacteriol. 1992, 42, 568–576.
  • Gorshkova, N.M.; Ivanova, E.P.; Sergeev, A.F.; Zhukova, N.V.; Alexeeva, Y.; Wright, J.P.; Nicolau, D.V.; Mikhailov, V.V.; Christen, R. Marinobacter excellens sp. nov., isolated from sediments of the Sea of Japan. Int. J. Syst. Evol. Microbiol. 2003, 53, 2073–2078.
  • Abraham, W.-R.; Lünsdorf, H.; Vancanney, M.; Smit, J. Cauliform bacteria lacking phospholipids from an abyssal hydrothermal vent: Proposal of Glycocaulisabyssi gen. nov., sp. nov., belonging to the family Hyphomonadaceae. Int. J. Syst. Evol. Microbiol. 2013, 63, 2207–2215.
  • van Niel, C.B. The culture, general physiology, morphology and classification of the non-sulfur purple and brown bacteria. Bacteriol. Rev. 1944, 8, 1–118.
  • Hube, A.E.; Heyduck-Söller, B.; Fischer, U. Phylogenetic classification of heterotrophic bacteria associated with filamentous marine cyanobacteria in culture. Syst. Appl. Microbiol. 2009, 32, 256–265.
  • Yu, Y.; Yan, S.-L.; Li, H.-R.; Zhang, X.-H. Roseicitreum antarcticum gen. nov., sp. nov., an aerobic bacteriochlorophyll a-containing alphaproteobacterium isolated from antarctic sandy intertidal sediment. Int. J. Syst. Evol. Microbiol. 2011, 61, 2173–2179.
  • Milford, A.D.; Achenbach, L.A.; Jung, D.O.; Madigan, M.T. Rhodobaca bogoriensis gen. nov. and sp. nov., an alkaliphilic purple nonsulfur bacterium from African Rift Valley soda lakes. Arch. Microbiol. 2000, 174, 18–27.
  • Masui, N.; Morono, Y.; Inagaki, F. Microbiological assessment of circulation mud fluids during the first operation of riser drilling by the deep-earth research vessel chikyu. Geomicrobiol. J. 2008, 25, 274–282.
  • Amoozegar, M.A.; Sánchez-Porro, C.; Rohban, R.; Hajighasemi, M.; Ventosa, A. Piscibacillus halophilus sp. nov., a moderately halophilic bacterium from a hypersaline Iranian lake. Int. J. Syst. Evol. Microbiol. 2009, 59, 3095–3099.
  • Jie, H.; Daping, L. Nitrite removal performance and community structure of nitrite-oxidizing and heterotrophic bacteria suffered with organic matter. Curr. Microbiol. 2008, 57, 287–293.
  • Larsen, H. Halophilism. In The Bacteria; Gunsalus, I.C., Stanier, R.Y., Eds.; Academic Press: New York, 1962; vol. 4, 297–342.
  • Ntougias, S. Phylogenetic identification and enzyme activities of indigenous bacteria from a landfill stabilization pond. Environ. Process. 2016, 3, 341–352.
  • He, Y.; Li, Z.; Yao, L.; Zhao, Y.C.; Huang, M.S.; Zhou, G.M. Molecular phylogenetic analysis of dominant microbial populations in aged refuse. World J. Microbiol. Biotechnol. 2014, 30, 1037–1045.
  • Pichler, M.; Kögel-Knabner, I. Chemolytic analysis of organic matter during aerobic and anaerobic treatment of municipal solid waste. J. Environ. Qual. 2000, 29, 1337–1344.
  • Chua, P.; Yoo, H.S.; Gan, H.M.; Lee, S.M. Draft genome sequences of two cellulolytic Paenibacillus sp. strains, MAEPY1 and MAEPY2, from Malaysian landfill leachate. Genome Announc. 2014, 2, e00065–14.
  • Jiangying, L.; Dimin, X.; Youcai, Z.; Shaowei, C.; Guojian, L.; Qi, Z. Long-term monitoring and prediction for settlement and composition of refuse in Shanghai Laogang Municipal Landfill. Environ. Manage. 2004, 34, 441–448.
  • Pichler, M.; Knicker, H.; Kogel-Knabner, I. Changes in the chemical structure of municipal solid waste during composting as studied by solid-state dipolar dephasing and PSRE 13C NMR and solid-state 15N NMR spectroscopy. Environ. Sci. Technol. 2000, 34, 4034–4038.
  • Skariyachan, S.; Megha, M.; Kini, M.N.; Mukund, K.M.; Rizvi, A.; Vasist, K. Selection and screening of microbial consortia for efficient and ecofriendly degradation of plastic garbage collected from urban and rural areas of Bangalore, India. Environ. Monit. Assess. 2015, 187, art. 4174.
  • Anil Kumar, P.; Srinivas, T.N.R.; Madhu, S.; Sravan, R.; Singh, S.; Naqvi, S.W.A.; Shivaji, S. Cecembia lonarensis gen. nov., sp. nov., a haloalkalitolerant bacterium of the family Cyclobacteriaceae, isolated from a haloalkaline lake and emended descriptions of the genera Indibacter, Nitritalea and Belliella. Int. J. Syst. Evol. Microbiol. 2012, 62, 2252–2258.
  • Munjam, S.; Girisham, S.; Reddy, S.M. Production of lipases by four anoxygenic purple non-sulphur phototrophic bacteria. Hindustan Antibiot. Bull. 2005, 4748, 32–35.
  • Yue, H.; Ling, C.; Yang, T.; Chen, X.; Chen, Y.; Deng, H.; Wu, Q.; Chen, J.; Chen, G.-Q. A seawater-based open and continuous process for polyhydroxyalkanoates production by recombinant Halomonas campaniensis LS21 grown in mixed substrates. Biotechnol. Biofuels 2014, 7, art. no. 108.
  • Ohnishi, A.; Nagano, A.; Fujimoto, N.; Suzuki, M. Phylogenetic and physiological characterization of mesophilic and thermophilic bacteria from a sewage sludge composting process in Sapporo, Japan. World J. Microbiol. Biotechnol. 2011, 27, 333–340.
  • Moreno, M.L.; Pérez, D.; García, M.T.; Mellado, E. Halophilic bacteria as a source of novel hydrolytic enzymes. Life 2013, 3, 38–51.
  • Rohban, R.; Amoozegar, M.A.; Ventosa, A. Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake, Iran. J. Ind. Microbiol. Biotechnol. 2009, 36, 333–340.
  • Schreck, S.D.; Grunden, A.M. Biotechnological applications of halophilic lipases and thioesterases. Appl. Microbiol. Biotechnol. 2014, 98, 1011–1021.
  • Sarethy, I.P.; Saxena, Y.; Kapoor, A.; Sharma, M.; Sharma, S.K.; Gupta, V.; Gupta, S. Alkaliphilic bacteria: Applications in industrial biotechnology. J. Ind. Microbiol. Biotechnol. 2011, 38, 769–790.
  • Li, X.; Qian, P.; Wu, S.-G.; Yu, H.-Y. Characterization of an organic solvent-tolerant lipase from Idiomarina sp. W33 and its application for biodiesel production using Jatropha oil. Extremophiles 2014, 18, 171–178.
  • Stackebrandt, E.; Goebel, B.M. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 1994, 44, 846–849.
  • Ueda, S.; Fujiwara, N.; Naka, T.; Sakaguchi, I.; Ozeki, Y.; Yano, I.; Kasama, T.; Kobayashi, K. Structure-activity relationship of mycoloyl glycolipids derived from Rhodococcus sp. 4306. Microb. Pathog. 2001, 30, 91–99.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.