6,233
Views
91
CrossRef citations to date
0
Altmetric
Original Articles

Protein Isolates from Bambara Groundnut (Voandzeia Subterranean L.): Chemical Characterization and Functional Properties

, &
Pages 758-775 | Received 02 Aug 2009, Accepted 16 Oct 2009, Published online: 13 Jun 2011
 

Abstract

The physicochemical, functional, and thermal properties of protein isolates obtained from two varieties of Bambara groundnut were evaluated. Proteins were isolated using alkaline extraction (isoelectric precipitation [IEP]) and micellisation techniques. IEP recorded a higher protein yield (56.3–58.2 g/100 g) than the micellised protein (MP) (14.2 – 15.6 g/100 g). A similar trend was observed for the protein content of the isolates. The isolates contained a high level of lysine, arginine, and glutamic acid compared to soy protein. Minimum solubility of the flours of the two varieties occured at pH 5. MP isolates exhibited higher solubility than the corresponding isoelectric (IEP) isolates over all pH values. The micellised protein recorded superior functional characteristics than the isoelectric isolates. The micellised isolates also showed a significantly higher (P < 0.05) foam capacity and stability, oil and water absorption properties than the isoelectric isolate. The MP of both varieties also recorded significantly higher emulsifying properties-+ than their isoelectric protein isolates. The micellised protein also had better gelation properties than the isoelectric isolate. Micellised and isoelectric isolates did not reveal major differences in the electrophoretic patterns; both isolates had three major bands at 35.0, 43.0, and 112.0 kDa. The bands in the isoelectric protein isolate however, were well defined compared with the micellised isolate. All Bambara isolates were not dissociated by 1,4-Dithiothreitol (DTT) suggesting that they do not contain subunits linked by a disulphide bond. This suggests that 7S vicilin may be the major storage protein in Bambara groundnut isolates. Differential scanning calorimetry studies (DSC) of the two varieties of bambara groundnut proteins indicated that the thermograms of the micellised isolates have a higher denaturation temperature Td (97.9–108.4°C) than their corresponding isoelectric isolates (89.5–90.6°C).

ACKNOWLEDGMENTS

YAA is grateful to the Alexander von Humboldt AvH Foundation for their support through the Georg Foster Fellowships. The assistance of Frau Dr. Yvonne Schneider and Frau Dr. Böhme Birgt is acknowledged.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.