8,442
Views
10
CrossRef citations to date
0
Altmetric
Original Article

Comparison of crystallized coconut sugar produced by traditional method and amorphous coconut sugar formed by two drying methods: vacuum drying and spray drying

, , , , , , & show all
Pages 2339-2354 | Received 05 Jun 2018, Accepted 27 Aug 2018, Published online: 24 Sep 2018
 

ABSTRACT

Coconut sugar is traditionally produced by evaporating sap until reaching its saturated liquid and formed a crystalline structure. This study investigated the comparison of coconut sugar made by traditional method (crystalline structure) and dried coconut sugar (predominantly amorphous structure) to its characteristics. Two different formulation of coconut sap : maltodextrin (7 : 3) and (6 : 4) (weight/weight) were dried using vacuum oven (70℃, 6 hours) and spray dried (Tinlet 120℃.) Coconut sugar was characterized for moisture content, crystallinity, water sorption isotherm, hygroscopic rate, color, dissolving time, and powder recovery. Initial moisture content was examined and in range of 1.33% - 3.44% (wb). The highest monolayer water content was obtained by using spray drying (6 : 4) and lowest was obtained by traditional method. X-ray diffraction showed that dried coconut sugar powder had dominant amorphous structure (70.9 – 71.4%) while traditional one was dominated with crystalline structure (90.5%). Traditional coconut sugar was the least hygroscopic (1.21 × 10-4 g water/g solid/minutes), followed by vacuum dried coconut sugar (1.48 × 10-4 g water/g solid/minutes) and spray dried ones (1.56 – 1.67 × 10-4 g water/g solid/minutes). Spray dried coconut sugar had the brightest and the whitest color, followed by vacuum dried and traditional coconut sugar. Vacuum dried powder was quicker to dissolve (13.33 – 16.67 s), while increasing maltodextrin in spray drying could not decrease the dissolving time. The highest powder recovery of dried sugar was obtained by using vacuum drying and higher maltodextrin concentration (88.70%) while traditional method produced 100% powder recovery.

Additional information

Funding

This work was supported by the Universitas Padjadjaran.