1,125
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Techno-functional, antioxidants, microstructural, and sensory characteristics of biscuits as affected by fat replacer using roasted and germinated chickpea (Cicer arietinum L.)

ORCID Icon, ORCID Icon, , , , & ORCID Icon show all
Pages 2055-2077 | Received 08 May 2023, Accepted 25 Jul 2023, Published online: 01 Aug 2023
 

ABSTRACT

Obesity is one of the major causes of non-communicable diseases (NCDs) associated with a dietary pattern rich in saturated fat. The present study utilized roasted and germinated chickpeas (Cicer arietinum) flour (RCPF and GCPF) as a replacement for fat in biscuits, known to have nutraceutical properties. The fat content was modified using the following ratios: 10%, 20%, and 30% (w/w) of RCPF/GCPF. Based on the physicochemical analysis, increased concentrations of RCPF and GCPF in the flour blends resulted in higher levels of protein, ash, and crude fiber contents. GCPF was found to contain higher levels of protein (20.20%), ash (4.86%), and crude fiber (3.64%) compared to RCPF. Increased RCPF and GCPF levels resulted in reduction of gluten content, which indicated weak gluten network. Scanning electron micrographs (SEM) of biscuit samples further supported these observations. The farinograph properties showed significant increase (P<0.05) in water absorption and dough development time. Furthermore, when RCPF and GCPF were added to flour blends and biscuits samples, significant increase (P<0.05) in antioxidant activity, total phenolic content, and total flavonoid content was observed. These trends were observed to be more prominent with higher quantities of RCPF and GCPF. Notably, the antioxidant properties of chickpeas were found to be significantly improved (P<0.05) by the process of germination compared to roasting. Moreover, improvements in antioxidant activity might be caused by the increased levels of phenolic compounds and ascorbic acid due to the actions of endogenous hydrolytic enzymes during germination. The dimensional, textural, and sensory properties indicated that RCPF 20% and GCPF 10% can effectively serve as an organic fat substitute in bakery products with enhanced concentrations of proteins, fibers, antioxidants, and bioactive compounds with nutraceutical properties.       

Acknowledgments

This study was supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R23), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Supplementary material

Supplemental data for this article can be accessed online at https://doi.org/10.1080/10942912.2023.2242602

Correction Statement

This article has been republished with minor changes. These changes do not impact the academic content of the article.

Additional information

Funding

Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R23) Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.