Publication Cover
Archives of Physiology and Biochemistry
The Journal of Metabolic Diseases
Volume 129, 2023 - Issue 3
261
Views
8
CrossRef citations to date
0
Altmetric
Original Article

Resistance training, gremlin 1 and macrophage migration inhibitory factor in obese men: a randomised trial

, , , , , , , , ORCID Icon & ORCID Icon show all
Pages 640-648 | Received 06 Oct 2020, Accepted 20 Nov 2020, Published online: 28 Dec 2020
 

Abstract

Objective

This study aimed to determine how different resistance training protocols affect gremlin 1, macrophage migration inhibitory factor (MIF), cardiometabolic, and anthropometric measures in obese men.

Methods

Forty-four males with obesity (weight: 93.2 ± 2.2 kg, BMI: 32.9 ± 1.2 kg/m2, age: 27.5 ± 9.4 years) were randomly assigned to traditional resistance training (TRT, n = 11), circuit resistance training (CRT, n = 11), interval resistance training (IRT, n = 11) or control (C, n = 11) groups. TRT group performed ten exercises at 50% of 1RM with 14 repetitions for three sets and 30 seconds rest interval between exercises and 1.5 min rest between sets, the CRT protocol included three circuits of 10 exercises, at an intensity of 50% of 1-RM, 14 repetitions with a minimum rest (< 15 s) between exercises and 3 min rest between sets, and the IRT group performed two sets of the same exercises with 50% of 1 RM, and 14 repetitions were followed with active rest of 25% of 1RM and 14 repetitions. All resistance training groups performed 60 min per session resistance exercises, 3 days per week, for 12 weeks. Measurements were taken at baseline and after 12 weeks of exercise training.

Results

Resistance training (TRT, CRT, and IRT) significantly decreased plasma levels of gremlin (TRT from 231.0 ± 5.8 to 210.0 ± 11.6 ng/ml, CRT from 226.0 ± 7.6 to 188.0 ± 7.7 ng/ml and, IRT from 227.0 ± 6.3 to 183.0 ± 9.0 ng/ml, effect size (ES): 0.50), MIF (TRT from 251.0 ± 7.4 to 260.0 ± 6.5 ng/ml, CRT from 248.0 ± 10.9 to 214.0 ± 9.0 ng/ml and, IRT from 247.0 ± 8.9 to 196.0 ± 6.9 ng/ml, ES: 0.55) and CRP (TRT from 28.4 ± 1.7 to 23.3 ± 2.1 nmol/l, CRT from 28.5 ± 2.2 to 21.1 ± 1.8 nmol/l, IRT from 28.1 ± 1.3 to 20.8 ± 1.3 nmol/l, ES: 0.49) compared to the control group (p < .05), but these reduction were greater in the CRT and IRT groups compared to the TRT group (p < .05).

Conclusion

The CRT and IRT protocols had more beneficial improvement in gremlin 1, MIF, body composition, and cardiometabolic risk factors compared to the beneficial changes produced by TRT protocol.

Acknowledgements

The authors would like to thank all participants who generously contributed to this study.

Disclosure statement

The authors declared no potential conflicts of interest concerning the research, authorship, and/or publication of this article.

Data availability statement

The datasets generated for this study are available on request to the corresponding author.

Additional information

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.