203
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Relationship between crossover modulus and asphalt chemistry to oxidation process based on the RHEO+ method

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 218-229 | Received 27 Mar 2023, Accepted 12 Apr 2023, Published online: 26 Apr 2023
 

Abstract

Fatigue damage is related to low-temperature conditions. Under this assumption, a question arises: why does fatigue occur at temperatures at which it should not and what methods should be used to study this phenomenon? Additionally, it is well known that oxidation causes asphalt to become brittle. Therefore, oxidation is usually associated with fatigue. As asphalt oxidizes, it changes its chemical composition affecting its rheology, the polarity increases, causing more rigid molecular structures to appear that directly affects its elastic response in turn. Consequently, the aim of this study is to propose a tool that relates chemistry and rheology. The method RHEO-PLUS (RHEO+) offers the possibility of correlating the viscoelastic mechanical properties measured in the rheometer, with the changes in the chemical composition of the oxidised asphalt. Based on RHEO+ it is possible to recognise whether the binder is in optimal conditions, aged (by loss of volatile fraction), or oxidised.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.