207
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Relationship between crossover modulus and asphalt chemistry to oxidation process based on the RHEO+ method

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 218-229 | Received 27 Mar 2023, Accepted 12 Apr 2023, Published online: 26 Apr 2023

References

  • Ahmad, M., Mannan, U. A., Islam, M. R., & Tarefder, R. A. (2018). Chemical and mechanical changes in asphalt binder due to moisture conditioning. Road Materials and Pavement Design, 19(5), 1216–1229. https://doi.org/10.1080/14680629.2017.1299631
  • Angell, C. A. (1985). Spectroscopy simulation and scattering, and the medium range order problem in glass. Journal of Non-Crystalline Solids, 73(1-3), 1–17. https://doi.org/10.1016/0022-3093(85)90334-5
  • Azimi Alamdary, Y., Singh, S., & Baaj, H. (2021). Toward a realistic asphalt mix ageing protocol. Road Materials and Pavement Design, 23(10), 1–17. https://doi.org/10.1080/14680629.2021.1987303
  • Bowden, H., Almond, M. J., Hayes, W., Browne, C., & McRobbie, S. (2021). The use of diffuse reflectance infrared spectroscopy to monitor the oxidation of UV irradiated and naturally aged bitumen and asphalt. Road Materials and Pavement Design, 22(6), 1254–1267. https://doi.org/10.1080/14680629.2019.1684982
  • Branthaver, J. F., Petersen, J. C., Robertson, R. E., Duvall, J. J., Kim, S. S., Harnsberger, P. M., Mill, T., Ensley, E. K., Barbour, F. A., & Schabron, J. F. (1993). Binder characterization and evaluation,: SHRP-A-368: Chemistry. Transportation Research Board, National Research Council, Washington DC.
  • Brinson, H. F. (2015). Polymer engineering and viscoelasticity. An introduction (Vol. 2). Springer.
  • Cholewinska, M., Iwański, M., & Mazurek, G. (2018). The impact of ageing on the bitumen stiffness modulus using the CAM model. Baltic Journal of Road and Bridge Engineering, 13(1), 34–39. Daniel, J. S.,: Kim, Y. R., and Lee, H. J., 1998. https://doi.org/10.3846/bjrbe.2018.386
  • Daly, W. H., Qiu, Z., & Negulescu, I. (1996). Differential scanning calorimetry study of asphalt crystallinity. Transportation Research Record, 1535(1), 54–60. https://doi.org/10.1177/0361198196153500108
  • Das, P. K., Baaj, H., Kringos, N., & Tighe, S. (2015). Coupling of oxidative ageing and moisture damage in asphalt mixtures. Road Materials and Pavement Design, 16(suppl 1), 265–279. https://doi.org/10.1080/14680629.2015.1030835
  • Garcia Cucalon, L., Kaseer, F., Arámbula-Mercado, E., Epps Martin, A., Morian, N., Pournoman, S., & Hajj, E. (2019). The crossover temperature: Significance and application towards engineering balanced recycled binder blends. Road Materials and Pavement Design, 20(6), 1391–1412. https://doi.org/10.1080/14680629.2018.1447504
  • Ginzburg, V. V. (2021). Modeling the glass transition and glassy dynamics of random copolymers using the TS2 mean-field approach. Macromolecules, 54(6), 2774–2782. https://doi.org/10.1021/acs.macromol.1c00024
  • Hrma, P. (2008). Glass viscosity as a function of temperature and composition: A model based on Adam–Gibbs equation. Journal of Non-Crystalline Solids, 354(29), 3389–3399. https://doi.org/10.1016/j.jnoncrysol.2008.02.019
  • Huang, S., & Grimes, W. (2010). Influence of aging temperature on rheological and chemical properties of asphalt binders. Transportation Research Record: Journal of the Transportation Research Board, 2179(1), 39–48. https://doi.org/10.3141/2179-05
  • Jing, R., Varveri, A., Liu, X., Scarpas, A., & Erkens, S. (2020). Rheological: Fatigue and relaxation properties of aged bitumen. International Journal of Pavement Engineering, 21(8), 1024–1033. https://doi.org/10.1080/10298436.2019.1654609
  • Koyun, A., Büchner, J., Wistuba, M. P., & Grothe, H. (2022). Rheological: Spectroscopic and microscopic assessment of asphalt binder ageing. Road Materials and Pavement Design, 23(1), 80–97. https://doi.org/10.1080/14680629.2020.1820891
  • Leiva-Villacorta, F., & Vargas-Nordcbeck, A. (2019). Optimum content of nano-silica to ensure proper performance of an asphalt binder. Road Materials and Pavement Design, 20(2), 414–425. https://doi.org/10.1080/14680629.2017.1385510
  • Liu, F., Zhou, Z., & Zhang, X. (2021). Linking chemical to rheological properties of asphalt binder with oxidative aging effect. Road Materials and Pavement Design, 22(9), 2014–2028. https://doi.org/10.1080/14680629.2020.1740770
  • Marasteanu, M. (2007). Emerging methods in asphalt binder rheological characterization. Road Materials and Pavement Design, 8(2), 257–284. https://doi.org/10.1080/14680629.2007.9690075
  • Marasteanu, M. O., & Basu, A. (2004). Stiffness m-value and the low temperature relaxation properties of asphalt binders. Road Materials and Pavement Design, 5(1), 121–131. https://doi.org/10.1080/14680629.2004.9689966
  • Masson, J. F., Polomark, G. M., & Collins, P. (2002). Time-dependent microstructure of bitumen and its fractions by modulated differential scanning calorimetry. Energy & Fuels, 16(2), 470–476. https://doi.org/10.1021/ef010233r
  • Mensching, D. J., Rowe, G. M., Daniel, J. S., & Bennert, T. (2015). Exploring low-temperature performance in black space. Road Materials and Pavement Design, 16(suppl 2), 230–253. https://doi.org/10.1080/14680629.2015.1077015
  • Miranda, F. (2014). Análisis micromecánico de matrices asfálticas finas para la obtención de módulos de cortante y flexión y generación de curvas maestras, University of Costa Rica.
  • Padmarekha, A., & Murali, K. (2013). Viscoelastic transition of unaged and aged asphalt. Journal of Materials in Civil Engineering, 25(12), 1852–1863. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000734
  • Petersen, J. C. (2009). A review of the fundamentals of asphalt oxidation. Transportation Research Record, E-C140.
  • Polacco, G., Stastna, J., Biondi, D., & Zanzotto, L. (2006). Relation between polymer architecture and nonlinear viscoelastic behavior of modified asphalts. Current Opinion in Colloid & Interface Science, 11(4), 230–245. https://doi.org/10.1016/j.cocis.2006.09.001
  • Porot, L., & Eduard, P. (2016). Addressing asphalt binder aging through the viscous to elastic transition. In ISAP symposium. Jackson Hole.
  • Poulikakos, L. D., Hofko, B., Cannone Falchetto, A., Porot, L., Ferrotti, G., & Grenfell, J. (2019). Recommendations of RILEM TC 252-CMB: Relationship between laboratory short-term aging and performance of asphalt binder. Materials and Structures, 52(4), 1–6. https://doi.org/10.1617/s11527-019-1370-9
  • Prapaitrakul, N., Han, R., Jin, X., & Glover, C. J. (2009). A transport model of asphalt binder oxidation in pavements. Road Materials and Pavement Design, 10(suppl 1), 95–113. https://doi.org/10.1080/14680629.2009.9690238
  • Rahbar-Rastegar, R., Sias Daniel, J., & Reinke, G. (2017). Comparison of asphalt binder and mixture cracking parameters. Road Materials and Pavement Design, 18(suppl 4), 211–233. https://doi.org/10.1080/14680629.2017.1389071
  • Rosen, S. (1993). Fundamental principles of polymeric materials (Vol. 2). John Wiley & Sons, Inc.
  • Rycroft, C. H., & Bouchbinder, E. (2012). Fracture toughness of metallic glasses: Annealing-induced embrittlement. Physical Review Letters, 109(19), 194301. https://doi.org/10.1103/PhysRevLett.109.194301
  • Safaei, F., Lee, J. S., Nascimento, L. A. H. D., Hintz, C., & Kim, Y. R. (2014). Implications of warm-mix asphalt on long-term oxidative ageing and fatigue performance of asphalt binders and mixtures. Road Materials and Pavement Design, 15(suppl 1), 45–61. https://doi.org/10.1080/14680629.2014.927050
  • Villegas-Villegas, R. E., Baldi-Sevilla, A., Aguiar-Moya, J. P., & Loria-Salazar, L. (2018). Analysis of asphalt oxidation by means of accelerated testing and environmental conditions. Transportation Research Record, 2672(28), 244–255. https://doi.org/10.1177/0361198118777630
  • Villegas-Villegas, R. E., & Loría-Salazar, L. G.. (2012). Recycling of banana production waste bags in bitumens: A green alternative. Retrieved from: https://www.lanamme.ucr.ac.cr/repositorio/handle/50625112500/835
  • Walas, S. M. (2013). Reaction kinetics for chemical engineers: Butterworths series in chemical engineering. Butterworth-Heinemann.
  • Wang, D., Falchetto, A. C., Riccardi, C., Poulikakos, L., Hofko, B., Porot, L., Wistuba, M. P., Baaj, H., Mikhailenko, P., & Moon, K. H. (2019). Investigation on the combined effect of aging temperatures and cooling medium on rheological properties of asphalt binder based on DSR and BBR. Road Materials and Pavement Design, 20(suppl 1), S409–S433. https://doi.org/10.1080/14680629.2019.1589559
  • Webb, S., & Knoche, R. (1996). The glass-transition: Structural relaxation and shear viscosity of silicate melts. Chemical Geology, 128(1–4), 165–183. https://doi.org/10.1016/0009-2541(95)00171-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.