318
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Identification of elastic-plastic and phase transition characteristics for relaxor ferroelectric PMN-PT anisotropic single crystals using nanoindentation technique

, , &
Pages 2595-2608 | Received 26 Jul 2017, Accepted 28 Feb 2018, Published online: 12 Jul 2018
 

ABSTRACT

As one kind of important ferroelectric ceramics, relaxor ferroelectric PMN-PT single crystals have triggered a revolution in electromechanical devices owing to their giant piezoelectric properties and ultra-high electromechanical coupling factors. The present study focused on the mechanical responses of [100]- and [110]-oriented poled PMN-PT ferroelectric single crystals under an indenter loading. The hardness and Young’s modulus with different crystallographic orientations of the crystals were measured by using the continuous stiffness measurement (CSM) with nanoindentation technique. Using a spherical indenter pressured at different indentation depths, the typical quasi-static nanoindentation tests with displacement-controlled mode were performed on the PMN-PT single crystal samples. Load–displacement curves of indentations were recorded to reveal the yielding or inelasticity behaviour in [100]- and [110]-oriented PMN-PT through a pop-in event. It was further verified by the stress–strain curves evaluated from the corresponding load–displacement curves, to show the similar characteristic on the elastic–inelastic transition. When a Berkovich indenter was employed for mechanical response testing, another pop-in event was observed at a smaller indentation depth compared to the one for elastic–inelastic transition, which may indicate a pressure-induced phase transition from rhombohedral (R) to tetragonal (T) of the PMN-PT single crystals.

Additional information

Funding

The authors would like to acknowledge supports by the NNSFC (11402104), the Fundamental Research Funds for the Central Universities (861201) and the National Key Laboratory of Shock Wave and Detonation Physics (lsdkfjj-2014-003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.