319
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Identification of elastic-plastic and phase transition characteristics for relaxor ferroelectric PMN-PT anisotropic single crystals using nanoindentation technique

, , &
Pages 2595-2608 | Received 26 Jul 2017, Accepted 28 Feb 2018, Published online: 12 Jul 2018

References

  • G. Xu, K. Chen, D. Yang, and J. Li, Growth and electrical properties of large size Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals prepared by the vertical Bridgman technique, Appl. Phys. Lett. 90 (2007), pp. 032901-1–032901-3.
  • J. Tian, P. Han, X. Huang, H. Pan, J. Carroll, and D. Payne. Improved stability for piezoelectric crystals grown in the lead indium niobate-lead magnesium niobate-lead titanate system, Appl. Phys. Lett. 91 (2007), pp. 222903-1–222903-3.
  • D. Stansfield, Underwater Electroacoustic Transducers, Bath University Press, Bath, 1991.
  • M. Ahart, M. Somayazulu, R.E. Cohen, P. Ganesh, P. Dera, H. Mao, R. Hemley, Y. Pen, P. Liermann, and Z. Wu, Origin of morphotropic phase boundaries in ferroelectric, Nature 451 (2008), pp. 545–548. doi: 10.1038/nature06459
  • Q. Wan, C. Chen, and Y.P. Shen, Effects of stress and electric field on the electromechanical properties of Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 single crystals, J. Appl. Phys. 98 (2005), pp. 024103-1–024103-5.
  • Q. Wan, C. Chen, and Y.P. Shen, Electromechanical coupling properties of [001], [011] and [111] poled Pb (Mg1/3Nb2/3) O3-0.32 PbTiO3 single crystal, J. Mater. Sci. 41 (2006), pp. 2993–3000. doi: 10.1007/s10853-006-6766-6
  • M. Davis, D. Damjanovic, and N. Setter, Electric-field-, temperature-, and stress-induced phase transitions in relaxor ferroelectric single crystals, Phys. Rev. B 73 (2006), pp. 014115-1–014115-16. doi: 10.1103/PhysRevB.73.014115
  • E.A. McLaughlin, T. Liu, and C.S. Lynch, Relaxor ferroelectric PMN-32% PT crystals under stress and electric field loading: I-32 mode measurements, Acta Mater. 52 (2004), pp. 3849–3857. doi: 10.1016/j.actamat.2004.04.034
  • E.A. McLaughlin, T. Liu, and C.S. Lynch, Relaxor ferroelectric PMN-32% PT crystals under stress and electric field loading: II-33 mode measurements, Acta Mater. 53 (2005), pp. 4001–4008. doi: 10.1016/j.actamat.2005.05.002
  • D. Viehland and J. Powers, Effect of uniaxial stress on the electromechanical properties of 0.7 Pb (Mg1/3 Nb2/3) O3-0.3 PbTiO3 crystals and ceramics, J. Appl. Phys. 89 (2001), pp. 1820–1825. doi: 10.1063/1.1335650
  • J.K. Shang and X. Tan, Indentation-induced domain switching in Pb(Mg1/3Nb2/3)O3-PbTiO3 crystal, Acta Mater. 49 (2001), pp. 2993–2999. doi: 10.1016/S1359-6454(01)00199-9
  • H.F. Yu, H.R. Zeng, X.D. Ma, R.Q. Chu, G.R. Li, H.S. Luo, and Q.R. Yin, Indentation induced mechanical and electrical response in ferroelectric crystal investigated by acoustic mode AFM, Phys. Status Solid A 202 (2005), pp. R10–R12. doi: 10.1002/pssa.200409082
  • Z.J. Xu, R.Q. Chu, G.R. Li, H.R. Zeng, H.F. Yu, and Q.R. Yin, Strain anisotropy and piezoelectric response along <001>  and <110> directions in PMN-38PT single crystal, Mater. Lett. 59 (2005), pp. 1653–1655. doi: 10.1016/j.matlet.2005.01.035
  • I. Bdikin, B. Singh, J.S. Kumar, M.P.F. Graca, A.M. Balbashov, J. Gracio, and A.L. Kholkin, Nanoindentation induced piezoelectricity in SrTiO3 single crystals, Scripta Mater. 74 (2014), pp. 76–79. doi: 10.1016/j.scriptamat.2013.11.003
  • D. Liu, M. Chelf, and K.W. White, Indentation plasticity of barium titanate single crystals: dislocation influence on ferroelectric domain walls, Acta Mater. 54 (2006), pp. 4525–4531. doi: 10.1016/j.actamat.2006.05.039
  • S. Sridhar, A.E. Giannakopoulos, S. Suresh, and U. Ramamurty, Electrical response during indentation of piezoelectric materials: a new method for material characterization, J. Appl. Phys. 85 (1999), pp. 380–387. doi: 10.1063/1.369459
  • U. Ramamurty, S. Sridhar, A.E. Giannakopoulos, and S. Suresh, An experimental study of spherical indentation on piezoelectric materials, Acta Mater 47 (1999), pp. 2417-2430. doi: 10.1016/S1359-6454(99)00095-6
  • G. Cheng and T.A. Venkatesh, Dominant factors influencing the nanoindentation response of piezoelectric materials: a case study in relaxor ferroelectric, Philos. Mag. Lett. 93 (2013), pp. 116-128. doi: 10.1080/09500839.2012.752881
  • G. Cheng and T.A. Venkatesh, Nanoindentation response of anisotropic piezoelectric materials, Philos. Mag. Lett. 92 (2012), pp. 278–287. doi: 10.1080/09500839.2012.669054
  • H. Zhou, Y. Pei, H. Huang, H. Zhao, F. Li, and D. Fang, Multi-field nanoindentation apparatus for measuring local mechanical properties of materials in external magnetic and electric fields, Rev. Sci. Instrum. 84 (2013), pp. 063906-1–063906-6.
  • H. Zhou, Y. Pei, F. Li, H. Luo, and D. Fang, Electric-field-tunable mechanical properties of relaxor ferroelectric single crystal measured by nanoindentation, Appl. Phys. Lett. 104 (2014), pp. 061904-1–061904-5.
  • T.F. Juliano, Y.G. Gogotsi, T.E. Buchheit, C.S. Waston, S.V. Kalinin, J. Shin, and A.P. Baddorf, Detection of indentation induced FE-to-AFE phase transformation in lead zirconate titanate, J. Am. Ceram. Soc. 89 (2006), pp. 3557–3559. doi: 10.1111/j.1551-2916.2006.01255.x
  • Y. Gaillard, M. Anglada, and E. Jimenez-Pique, Nanoindentation of yttria-doped zirconia: effect of crystallographic structure on deformation mechanisms, J. Mater. Res. 24 (2009), pp. 719–727. doi: 10.1557/jmr.2009.0091
  • A. Montagne, C. Tromas, V. Audurier, and J. Woirgard, A new insight on reversible deformation and incipient plasticity during nanoindentation test in MgO, J. Mater. Res. 24 (2009), pp. 883–889. doi: 10.1557/jmr.2009.0127
  • R.K. Chintapalli, P.E. Jimenez, F.G. Marro, H. Yan, M. Reece, and M. Anglada, Spherical instrumented indentation of porous nanocrystalline zirconia, J. Eur. Ceram. Soc. 32 (2012), pp. 123–132. doi: 10.1016/j.jeurceramsoc.2011.07.037
  • S. Pathak and S.R. Kalidindi, Spherical nanoindentation stress-strain curves, Mater. Sci. Eng. Res. 91 (2015), pp. 1–36. doi: 10.1016/j.mser.2015.02.001
  • Hertz H., D.E. Jones, and G.A. Schott, Miscellaneous Papers, Macmillan, London, 1863.
  • W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992), pp. 1564–1583. doi: 10.1557/JMR.1992.1564
  • D. Tabor, Hardness of Metals, Clarendon Press, Oxford, 1951.
  • I.N. Sneddon, The relaxation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. J. Eng. Sci, 3 (1965), pp. 47–57. doi: 10.1016/0020-7225(65)90019-4
  • J.S. Field and M.V. Swain, A simple predictive for spherical indentation, J. Mater. Res. 8 (1993), pp. 297–306 doi: 10.1557/JMR.1993.0297
  • L.H. He and M.V. Swain, Nanoindentation derived stress–strain properties of dental materials . Dent. Mater. 23 (2007), pp. 814–821. doi: 10.1016/j.dental.2006.06.017
  • D. Viehland and J.F. Li, Stress-induced phase transformations in <001>-oriented Pb (Mg1/3Nb2/3) O3-PbTiO3 crystals: bilinear coupling of ferroelastic strain and ferroelectric polarization, Phil. Mag. 83 (2003), pp. 53–59. doi: 10.1080/0141861021000019998

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.