189
Views
2
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Revisit of the shape and orientation of precipitates with tetragonal transformation strains that minimise the elastic energy

ORCID Icon, &
Pages 927-954 | Received 23 Sep 2019, Accepted 09 Dec 2019, Published online: 08 Jan 2020
 

ABSTRACT

The selection of the shape and orientation of precipitates with tetragonal misfit (transformation) strains that minimise the elastic energy is revisited. The complex map of preferred shapes suggested by Kaganova and Roitburd for inhomogeneous isotropic materials is extended to materials with cubic symmetry and for systems that compromise with the surface energy of close-packed planes. Several shape transitions are explained from the kinematics of precipitates with tetragonal transformation strains in solid matrices. Plate shaped precipitates are associated with minimum elastic energy in homogenous systems and for soft precipitates, in accordance with the theorem of Khachaturyan. We explain how compact shapes like rods and spheres arise when the matrix is softer than the precipitate. Analytic estimations are derived to determine the preferred shapes based on the difference between the elastic stiffness of the matrix and the precipitate. When the transformation strains differ in sign, they give rise to a large lattice rotation. This lattice rotation is necessary for the formation of twins by equivalent variants of the transformation strain.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.