189
Views
2
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Revisit of the shape and orientation of precipitates with tetragonal transformation strains that minimise the elastic energy

ORCID Icon, &
Pages 927-954 | Received 23 Sep 2019, Accepted 09 Dec 2019, Published online: 08 Jan 2020

References

  • I.M. Kaganova and A.L. Roitburd, Equilibrium shape of an inclusion in a solid. Sov. Phys. Dokl. 32 (1987), pp. 925–927.
  • Z. Zhang, J.M. Rosalie, N.V. Medhekar, and L. Bourgeois, Resolving the FCC/HCP interfaces of the γ’ (Ag2Al) precipitate phase in aluminium. Acta Mater. 174 (2019), pp. 116–130. doi: 10.1016/j.actamat.2019.04.058
  • L. Bourgeois, C. Dwyer, M. Weyland, J.F. Nie, and B.C. Muddle, Structure and energetics of the coherent interface between the θ’ precipitate phase and aluminium in Al–Cu. Acta Mater. 59 (2011), pp. 7043–7050. doi: 10.1016/j.actamat.2011.07.059
  • S.Y. Hu, M.I. Baskes, M. Stan, and L.Q. Chen, Atomistic calculations of interfacial energies, nucleus shape and size of θ’ precipitates in Al–Cu alloys. Acta Mater. 54 (2006), pp. 4699–4707. doi: 10.1016/j.actamat.2006.06.010
  • J.Z. Liu, J.H. Chen, X.B. Yang, S. Ren, C.L. Wu, H.Y. Xub, and J. Zou, Revisiting the precipitation sequence in Al–Zn–Mg-based alloys by high-resolution transmission electron microscopy. Script. Mater. 63 (2010), pp. 1061–1064. doi: 10.1016/j.scriptamat.2010.08.001
  • A. Bendo, K. Matsuda, S. Lee, K. Nishimura, N. Nunomura, H. Toda, M. Yamaguchi, T. Tsuru, K. Hirayama, K. Shimizu, H. Gao, K. Ebihara, M. Itakura, T. Yoshida, and S. Murakami, Atomic scale HAADF-STEM study of η’ and η1 phases in peak-aged Al–Zn–Mg alloys. J. Mater. Sci. 53 (2018), pp. 4598–4611. doi: 10.1007/s10853-017-1873-0
  • W. Chen, S. Cao, W. Kou, J. Zhang, Y. Wang, Y. Zha, Y. Pan, Q. Hu, Q. Sun, and J. Sun, Origin of the ductile-to-brittle transition of metastable (-titanium alloys: Self-hardening of (-precipitates. Acta Mater. 170 (2019), pp. 187–204. doi: 10.1016/j.actamat.2019.03.034
  • K.A. Taylor, G.B. Olson, M. Cohen, and J.B. Vander Sande, Carbide precipitation during stage I tempering of Fe-Ni-C martensites. Metal. Trans. A 20 (1989), pp. 2749–2765. doi: 10.1007/BF02670168
  • S.W. Thompson, Structural characteristics of transition-iron-carbide precipitates formed during the first stage of tempering in 4340 steel. Mater. Charact. 106 (2015), pp. 452–462. doi: 10.1016/j.matchar.2015.05.030
  • R.C. Reed, The Superalloys, Fundamentals and Applications, Cambridge University Press, Cambridge, 2006. ch. 2.
  • R. Cozar and A. Pineau, Morphology of y’ and y” precipitates and thermal stability of Inconel 718 type alloys. Metal. Trans. 4 (1973), pp. 47–59. doi: 10.1007/BF02649604
  • A.K. Sinha, Topological close packed structures of transition metal alloys. Progress in Mater. Sci. 15 (1972), pp. 79–185. doi: 10.1016/0079-6425(72)90002-3
  • L. Rogala, J. Morgiela, F. Steinb, B. Breitbachb, and J. Dutkiewicza, In-situ investigation of phase transformations during heating of AlCoCrCuNi high entropy melt-spun ribbons. Mater. Charact. 148 (2019), pp. 134–141. doi: 10.1016/j.matchar.2018.11.027
  • M.P. Gururajan and T.A. Abinandanan, Phase field study of precipitate rafting under a uniaxial stress. Acta Mater. 55 (2007), pp. 5015–5026. doi: 10.1016/j.actamat.2007.05.021
  • G. Boussinot, Y. Le Bouar, and A. Finel, Phase-field simulations with inhomogeneous elasticity: comparison with an atomic-scale method and application to superalloys. Acta Mater. 58 (2010), pp. 4170–4181. doi: 10.1016/j.actamat.2010.04.008
  • T. Sourmail, Precipitation in creep resistant austenitic steels. Mater. Sci. Technol. 17 (2001), pp. 1–14. doi: 10.1179/026708301101508972
  • M. Savoie, C. Esnouf, L. Fournier, and D. Delafosse, Influence of ageing heat treatment on alloy A-286 microstructure and stress corrosion cracking behavior in PWR primary water. J. Nucl. Mater. 360 (2007), pp. 222–230. doi: 10.1016/j.jnucmat.2006.10.003
  • J.K. Lee, D.M. Barnett, and H.I. Aaronson, The elastic strain energy of coherent ellipsoidal precipitates in anisotropic crystalline solids. Metall. Trans. A. 8 (1977), pp. 963–970. doi: 10.1007/BF02661580
  • R. Schneck, S.I. Rokhlin, and M.P. Dariel, Criterion for predicting the morphology of crystalline cubic precipitates in cubic matrix. Met. Trans. A. 16 (1985), pp. 197–202. doi: 10.1007/BF02816046
  • Y. Wang, D. Banerjee, C.C. Su, and A.G. Khachaturyan, Field kinetic model and computer simulation of precipitation of L12 ordered intermetallics from F.C.C. solid solution. Acta Mater. 46 (1998), pp. 2983–3001. doi: 10.1016/S1359-6454(98)00015-9
  • S.Y. Hu and L. Q, Chen A phase-field model for evolving microstructures with strong elastic inhomogeneity. Acta Mater. 49 (2001), pp. 1879–1890. doi: 10.1016/S1359-6454(01)00118-5
  • G. Boussinot, A. Finel, and Y. Le Bouar, Phase-field modeling of bimodal microstructures in nickel-based superalloys. Acta Mater. 57 (2009), pp. 921–931. doi: 10.1016/j.actamat.2008.10.039
  • J.Z. Zhu, T. Wang, A.J. Ardell, S.H. Zhou, Z.K. Liu, and L.Q. Chen, Three-dimensional phase-field simulations of coarsening kinetics of γ’ particles in binary Ni–Al alloys. Acta Mater. 52 (2004), pp. 2837–2845. doi: 10.1016/j.actamat.2004.02.032
  • L. Ding, Z. Jia, J.F. Nie, Y. Wenga, L. Cao, H. Chen, X. Wu, and Q. Liu, The structural and compositional evolution of precipitates in Al-Mg-Si-Cu alloy. Acta Mater. 145 (2018), pp. 437–450. doi: 10.1016/j.actamat.2017.12.036
  • W. Sha and Z. Guo, Maraging Steels: Modelling, Structure and Applications, Woodhead publishing, Cambridge, 2009. ch. 2.
  • S. Gao, Y. Zhou, C.-F. Li, J. Cui, Z.-Q. Liu, and T. Jin, In situ investigation on the precipitation of topologically close-packed phase in Ni-base single crystal superalloy. J. Alloys Compd. 610 (2014), pp. 589–593. doi: 10.1016/j.jallcom.2014.05.047
  • U. Dahmen, Orientation relationships in precipitation systems. Acta Metall. 30 (1982), pp. 63–73. doi: 10.1016/0001-6160(82)90045-1
  • U. Dahmen, P. Ferguson, and H. Westmacott, Invariant line strain and needle precipitate growth directions in Fe-Cu. Acta Metall. 32 (1984), pp. 803–810. doi: 10.1016/0001-6160(84)90153-6
  • G.A. Edwaeds, K. Stiller, G.L. Dunlop, and M.J. Couper, The precipitation sequence in Al-Mg-Si alloys. Acta Mater. 46 (1998), pp. 3893–3904. doi: 10.1016/S1359-6454(98)00059-7
  • G.B. Winkelman, K. Raviprasad, and B.C. Muddle, Orientation relationships and lattice matching for the S phase in Al–Cu–Mg alloys. Acta Mater. 55 (2007), pp. 3213–3228. doi: 10.1016/j.actamat.2007.01.011
  • C.P. Luo, U. Dahmen, and H. Westmacott, Morphology and crystallography of Cr precipitates in a Cu-0.33 wt% Cr alloy. Acta Metall. Mater. 42 (1994), pp. 1923–1932. doi: 10.1016/0956-7151(94)90017-5
  • T. Fujii, H. Nakazawa, M. Kato, and U. Dahmen, Crystallography and morphology of nanosized Cr particles in a Cu-0.2% Cr alloy. Acta Mater. 48 (2000), pp. 1033–1045. doi: 10.1016/S1359-6454(99)00411-5
  • A. Suzukia, H. Kojimab, T. Matsuob, and M. Takeyama, Alloying effect on stability of multi-variant structure of Ni3V at elevated temperatures. Intermetallics 12 (2004), pp. 969–975. doi: 10.1016/j.intermet.2004.02.028
  • Y. Ni, Y.M. Jin, and A.G. Khachaturyan, The transformation sequences in the cubic to tetragonal decomposition. Acta Mater. 55 (2007), pp. 4903–4914. doi: 10.1016/j.actamat.2007.05.016
  • A. Artemev, Y. Jin, and A.G. Khachaturyan, Three dimensional phase field model of proper martensitic transformation. Acta Mater. 49 (2001), pp. 1165–1177. doi: 10.1016/S1359-6454(01)00021-0
  • H. Zapolsky, S. Ferry, X. Sauvage, D. Blavette, and L.Q. Chen, Kinetics of cubic-to-tetragonal transformation in Ni-V-X alloys. Phil. Mag. 90 (2010), pp. 337–355. doi: 10.1080/14786430903179562
  • V. Vaithyanathan, C. Wolverton, and L.Q. Chen, Multiscale modeling of θ’ precipitation in Al–Cu binary alloys. Acta Mater. 52 (2004), pp. 2973–2987. doi: 10.1016/j.actamat.2004.03.001
  • A.L. Roitburd and N.S. Kosenko, Orientational dependence of the elastic energy of a plane interlayer in a system of coherent phases. Phys. Stat. Sol. (a) 35 (1976), pp. 735–745. doi: 10.1002/pssa.2210350239
  • R.Z. Shneck, Shape evolution of γ' precipitates in nickel alloys by stress assisted diffusion. Phil. Mag. A. 81 (2001), pp. 383–398. doi: 10.1080/01418610108214310
  • J.W. Hilliard, in Phase Transformations, H.I. Aaronson, ed., ASM, Metals Park, OH, 1970. pp. 497–560, App. A.
  • C.M. Wayman, Crystallography of martensitic transformations (Macmillan series in materials science NY 1964).
  • Z. Nishiyama, Martensitic Transformations, Academic Press, London, 1978.
  • A.G. Khachaturyan, Theory of Structural Transformations in Solids, Wiley, New York, 1983).
  • S.H. Wen, E. Kostlan, M. Hong, A.G. Khachaturyan, and J.W. Morris, The preferred habit of a tetragonal inclusion in a cubic matrix. Acta Metall. 29 (1981), pp. 1247–1254. doi: 10.1016/0001-6160(81)90015-8
  • J.M. Hinckley and J. Singh, Influence of substrate composition and crystallographic orientation on the band structure of pseudomorphic Si-Ge alloy films. Phys. Rev. B 42 (1990), pp. 3546–3566. doi: 10.1103/PhysRevB.42.3546
  • W.C. Johnson and J.W. Cahn, Elastically induced shape bifurcations of inclusions. Acta Metal 32 (1984), pp. 1125–1133.
  • R. Sankarasubramanian, C.S. Jog, and T.A. Abinandanan, Symmetry breaking transitions in equilibrium shapes of coherent precipitates: effect of elastic anisotropy and inhomogenity. Metal. Mater. Trans. A. 33 (2002), pp. 1083–1090. doi: 10.1007/s11661-002-0210-6
  • L. Thuinet, A. De Backer, and A. Legris, Phase-field modeling of precipitate evolution dynamics in elastically inhomogeneous low-symmetry systems: Application to hydride precipitation in Zr. Acta Mater. 60 (2012), pp. 5311–5321. doi: 10.1016/j.actamat.2012.05.041
  • P.W. Voorhees and W.C. Johnson, The thermodynamics of elastically stressed solids. Solid State Phys. 59 (2004), pp. 1–201. doi: 10.1016/S0081-1947(04)80003-1
  • L.Q. Chen, Phase field models for microstructure evolution. Annu. Rev. Mater. Res. 32 (2002), pp. 113–140. doi: 10.1146/annurev.matsci.32.112001.132041
  • Y. Le Bouar, A. Loiseau, and A.G. Khachaturyan, Origin of chessboard like structures in decomposing alloys, theoretical model and computer simulation. Acta Mater. 46 (1998), pp. 2777–2788. doi: 10.1016/S1359-6454(97)00455-2
  • W.A. Soffa, D.E. Laughlin, and N. Singh, Interplay of ordering and spinodal decomposition in the formation of ordered precipitates in binary fcc alloys: Role of second nearest-neighbor interactions. Philos. Mag. 90 (2010), pp. 287–304. doi: 10.1080/14786430903127520
  • J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. Royal Soc. London A. 241 (1957), pp. 376–396; in Prog. Solid Mech. Sneddon and Hill eds., 2 (1961), pp. 88–140.
  • T. Mura, Micromechanics of Defects in Solids. 2nd ed. Martius Nijhoff Pub, Dordrecht, 1987.
  • H. Hellwegae and M. Hellwegae, Landolt-Biirnstein, Group 111, Springer, Berlin, 1979.
  • M. Kato, T. Fujii and S. Onaka, Elastic strain energies of sphere, plate and needle inclusions. Mater. Sci. Eng. 211 (1996), pp. 95–103. doi: 10.1016/0921-5093(95)10091-1
  • T. Fujii, S. Onaka, and M. Kato, Shape dependent strain energy of an inhomogeneous coherent inclusion with general tetragonal misfit strains. Scrip. Mater. 34 (1996), pp. 1529–1535. doi: 10.1016/1359-6462(96)00031-0
  • M. Shmulevitsh and R.Z. Shneck, An approach to calculate the elastic interaction energy of inhomogeneous precipitates: application to gamma prime Ni3Ti in A-286 steel. J. Appl. Mech. 85 (2018), p. Art. 081003. doi: 10.1115/1.4040117
  • F. Laszlo, Tessellated stresses. J. Iron Steel Inst. 164 (1950), pp. 5–26.
  • K. Robinson, Elastic energy of an ellipsoidal inclusion in an infinite solid. J. Appl. Phys. 22 (1951), pp. 1045–1054. doi: 10.1063/1.1700099
  • A.G. Khachaturyan, S.M. Shapiro, and S. Semenovkaya, Adaptive phase formation in martensitic transformation. Phys. Rev. B 43 (1991), pp. 10832–10843. doi: 10.1103/PhysRevB.43.10832
  • S. Onaka, T. Fujii, and M. Kato, The elastic strain energy of a coherent inclusion with deviatoric misfit strains. Mech. Mater. 20 (1995), pp. 329–336. doi: 10.1016/0167-6636(94)00067-0
  • M.A. Jaswon, and R.D. Bhargava, Two dimensional elastic inclusion problems. Proc. Camb. Phil. Math. Phys. Sci. 57 (1961), pp. 669–680. doi: 10.1017/S0305004100035702
  • J.R. Willis, Anisotropic elastic inclusion problems. Quart. J. Mech. App. Mat. 17 (1964), pp. 157–174. doi: 10.1093/qjmam/17.2.157
  • H.C. Yang and Y.T. Chou, Generalized plane problems of elastic inclusions in anisotropic solids. J. Appl. Mech. 43 (1976), pp. 424–430. doi: 10.1115/1.3423884

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.