188
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Effects of a k⃗-dependent Hybridisation on the Fermi surface of an extended dp Hubbard model

, , &
Pages 1289-1300 | Received 16 Nov 2019, Accepted 23 Jan 2020, Published online: 13 Feb 2020
 

ABSTRACT

The topology of the Fermi surface of an extended dp Hubbard model is investigated using Green's function technique in a n-pole approximation. The effects of the dp hybridisation on the Fermi surface are the main focus in the present work. Nevertheless, the effects of doping, Coulomb interaction and hopping to second-nearest-neighbours on the Fermi surface, are also studied. Particularly, it is shown that the crossover from hole-like to electron-like Fermi surface (Lifshitz transition) is deeply affected by the dp hybridisation. Moreover, the pseudogap present in the low doping regime is also affected by the hybridisation. The results show that both the doping and the hybridisation act in the sense of suppresses the pseudogap. Therefore, the systematic investigation of the Fermi surface topology, shows that not only the doping but also the hybridisation can be considered as a control parameter for both the pseudogap and the Lifshitz transition. Assuming that the hybridisation is sensitive to external pressure, the present results agree qualitatively with recent experimental data for the cuprate Nd-LSCO.

Acknowledgments

The present study was supported by the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à pesquisa do Estado do RS (FAPERGS).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.