188
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Effects of a k⃗-dependent Hybridisation on the Fermi surface of an extended dp Hubbard model

, , &
Pages 1289-1300 | Received 16 Nov 2019, Accepted 23 Jan 2020, Published online: 13 Feb 2020

References

  • N. Doiron-Leyraud, O. Cyr-Choinière, S. Badoux, A. Ataei, C. Collignon, A. Gourgout, S. Dufour-Beauséjour, F.F. Tafti, F. Laliberté, M.-E. Boulanger, M. Matusiak, D. Graf, M. Kim, J.-S. Zhou, N. Momono, T. Kurosawa, H. Takagi and L. Taillefer, Pseudogap phase of cuprate superconductors confined by Fermi surface topology, Nat. Commun. 8 (2017), p. 2044. doi: 10.1038/s41467-017-02122-x
  • A. Ino, C. Kim, M. Nakamura, T. Yoshida, T. Mizokawa, A. Fujimori, Z.-X. Shen, T. Kakeshita, H. Eisaki and S. Uchida, Doping-dependent evolution of the electronic structure of La2−xSrxCuO4 in the superconducting and metallic phases, Phys. Rev. B 65 (2002), p. 094504.
  • S. Benhabib, A. Sacuto, M. Civelli, I. Paul, M. Cazayous, Y. Gallais, M.-A. Méasson, R.D. Zhong, J. Schneeloch, G.D. Gu, D. Colson and A. Forget, Collapse of the normal-state pseudogap at a Lifshitz transition in the Bi2Sr2CaCu2O8+δ cuprate superconductor, Phys. Rev. Lett. 114 (2015), p. 147001. doi: 10.1103/PhysRevLett.114.147001
  • Wei Wu, Mathias S. Scheurer, Shubhayu Chatterjee, Subir Sachdev, Antoine Georges and Michel Ferrero, Pseudogap and Fermi-Surface topology in the two-Dimensional Hubbard model, Phys. Rev. X 8 (2018), p. 021048.
  • Helena Bragança, Shiro Sakai, M.C.O. Aguiar and Marcello Civelli, Correlation-driven Lifshitz transition at the emergence of the pseudogap phase in the two-dimensional Hubbard model, Phys. Rev. Lett. 120 (2018), p. 067002. doi: 10.1103/PhysRevLett.120.067002
  • C. Proust and L. Taillefer, The remarkable underlying ground states of cuprate superconductors, Annu. Rev. Condens. Matter Phys. 10 (2019), p. 409. doi: 10.1146/annurev-conmatphys-031218-013210
  • M.K. Chan, C. Dorow, L. Mangin-Thro, Y. Tang, Y. Ge, M.J. Veit, G. Yu, X. Zhao, A.D. Christianson, J.T. Park, Y. Sidis, P. Steffens, D.L. Abernathy, P. Bourges and M. Greven, Commensurate antiferromagnetic excitations as a signature of the pseudogap in the tetragonal high-Tc cuprate HgBa2CuO4+, Nat. Commun. 7 (2016), p. 10819. doi: 10.1038/ncomms10819
  • K.H.A. Villegas, V.M. Kovalev, F.V. Kusmartsev and I.G. Savenko, Shedding light on topological superconductors, Phys. Rev. B 98 (2018), p. 064502. doi: 10.1103/PhysRevB.98.064502
  • N. Harrison, R.D. McDonald and J. Singleton, Cuprate Fermi orbits and Fermi arcs: the effect of short-range antiferromagnetic order, Phys. Rev. Lett. 99 (2007), p. 206406.
  • T. Morinari, Relationship between magnetic anisotropy below pseudogap temperature and short-Range antiferromagnetic order in high-Temperature cuprate superconductor, J. Phys. Soc. Jpn. 87 (2018), p. 063707. doi: 10.7566/JPSJ.87.063707
  • T. Morinari, Short-Range antiferromagnetic correlation effect on conduction electrons in two-Dimensional strongly correlated electron systems, J. Phys. Soc. Jpn. 88 (2019), p. 104707. doi: 10.7566/JPSJ.88.104707
  • K.S. Chen, Z.Y Meng, T. Pruschke, J. Moreno and M. Jarrell, Lifshitz transition in the two-dimensional Hubbard model, Phys. Rev. B 86 (2012), p. 165136.
  • Y. Yamaji and M. Imada, Composite-Fermion theory for pseudogap, Fermi arc, hole pocket, and non-Fermi liquid of underdoped cuprate superconductors, Phys. Rev. Lett. 106 (2011), p. 016404. doi: 10.1103/PhysRevLett.106.016404
  • L. Fratino, M. Charlebois, P. Smon, G. Sordi and A.-M.S. Tremblay, Effects of interaction strength, doping, and frustration on the antiferromagnetic phase of the two-dimensional Hubbard model, Phys. Rev. B 96 (2017), p. 241109. doi: 10.1103/PhysRevB.96.241109
  • A. Foley, S. Verret, A.-M.S. Tremblay and D. Snchal, Coexistence of superconductivity and antiferromagnetism in the Hubbard model for cuprates, Phys. Rev. B 99 (2019), p. 184510. doi: 10.1103/PhysRevB.99.184510
  • E.J. Calegari, S.G. Magalhaes and A.A. Gomes, Superconductivity in a two dimensional extended Hubbard model, Eur. Phys. J. B 45 (2005), p. 485. doi: 10.1140/epjb/e2005-00209-1
  • Xin Wang, L. Medici and A.J. Millis, Role of oxygen-oxygen hopping in the three-band copper-oxide model: quasiparticle weight, metal insulator and magnetic phase boundaries, gap values, and optical conductivity, Phys. Rev. B 83 (2011), p. 094501.
  • L. Fratino, P. Smon, G. Sordi and A.-M.S. Tremblay, Pseudogap and superconductivity in two-dimensional doped charge-transfer insulators, Phys. Rev. B 93 (2016), p. 245147. doi: 10.1103/PhysRevB.93.245147
  • Y.F. Kung, C.-C. Chen, Yao Wang, E.W. Huang, E.A. Nowadnick, B. Moritz, R.T. Scalettar, S. Johnston and T.P. Devereaux, Characterizing the three-orbital Hubbard model with determinant quantum Monte Carlo, Phys. Rev. B 93 (2016), p. 155166. doi: 10.1103/PhysRevB.93.155166
  • K.A. Sidorov, V.A. Gavrichkov, S.V. Nikolaev, Z.V. Pchelkina and S.G. Ovchinnikov, Effect of external pressure on the normal and superconducting properties of high Tc cuprates, Phys. Status Solidi B 147 (2016), p. 486. doi: 10.1002/pssb.201552465
  • E. Vitali, Hao Shi, A. Chiciak and S. Zhang, Metal-insulator transition in the ground state of the three-band Hubbard model at half filling, Phys. Rev. B 99 (2019), p. 165116. doi: 10.1103/PhysRevB.99.165116
  • H. Sakakibara, K. Suzuki, H. Usui, K. Kuroki, R. Arita, D. Scalapino and H. Aoki, Multiorbital analysis of the effects of uniaxial and hydrostatic pressure on Tc in the single-layered cuprate superconductors, Phys. Rev. B 86 (2012), p. 134520. doi: 10.1103/PhysRevB.86.134520
  • H. Aoki and T. Kariyado, Recent progress on carbon-based superconductors, J. Supercond. Nov. Magn. 27 (2014), p. 995. doi: 10.1007/s10948-013-2425-8
  • L. Deng, Y. Zheng, Z. Wu, S. Huyan, H. Wu, Y. Nie, K. Cho and C. Chu, Higher superconducting transition temperature by breaking the universal pressure relation, Proc. Natl. Acad. Sci. USA 116 (2019), p. 2004. doi: 10.1073/pnas.1819512116
  • L.G. Sarasua and Mucio A. Continentino, Superconductivity and excitonic state in a two-band model, Phys. Rev. B 65 (2002), p. 184503.
  • K. Sengupta and S.K. Ghatak, Effect of hybridization on superconductivity in quasi-two-dimensional systems, Phys. Lett. A 186 (1994), p. 419. doi: 10.1016/0375-9601(94)90705-6
  • A. Macridin, M. Jarrell, Th. Maier and G.A. Sawatzky, Physics of cuprates with the two-band Hubbard model: the validity of the one-band Hubbard model, Phys. Rev. B 71 (2005), p. 134527. doi: 10.1103/PhysRevB.71.134527
  • D. Reyes, N. Lopes, M.A. Continentino and C. Thomas, Influence of the symmetry of hybridization on the critical temperature of multiband superconductors, Phys. Rev. B 99 (2019), p. 224514. doi: 10.1103/PhysRevB.99.224514
  • L.M. Roth, Electron correlation in narrow energy bands. I. the two-Pole approximation in a narrow band, Phys. Rev. 184 (1969), p. 451. doi: 10.1103/PhysRev.184.451
  • J. Beenen and D.M. Edwards, Superconductivity in the two-dimensional Hubbard model, Phys. Rev. B 52 (1995), p. 13636. doi: 10.1103/PhysRevB.52.13636
  • A.A. Borisov, V.A. Gavrichkov and S.G. Ovchinnikov, Temperature and concentration dependences of the electronic structure of copper oxides in the generalized tight binding method, JETP 97 (2003), p. 773. doi: 10.1134/1.1625067
  • E.J. Calegari and S.G. Magalhaes, Spectral function of a d-p Hubbard model, Int. J. Mod. Phys. B 25 (2011), p. 41. doi: 10.1142/S021797921105775X
  • R. Hayn, V. Yushankhai and S. Lovtsov, Analysis of the singlet-triplet model for the copper oxide plane within the paramagnetic state, Phys. Rev. B 47 (1993), p. 5253. doi: 10.1103/PhysRevB.47.5253
  • N. Plakida, High-Temperature Cuprate Superconductors: Experiment, Theory, and Applications, Springer Science & Business Media, New York, 2010.
  • R. Eder, K. Seki and Y. Ohta, Self-energy and Fermi surface of the two-dimensional Hubbard model, Phys. Rev. B 83 (2011), p. 205137. doi: 10.1103/PhysRevB.83.205137
  • S.G. Ovchinnikov, E.I. Shneyder and M.M. Korshunov, Cluster size and shape effect on the electronic structure of the Hubbard model within the norm-Conserving cluster perturbation theory, J. Phys.: Condens. Matter 23 (2011), p. 045701.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.