201
Views
0
CrossRef citations to date
0
Altmetric
Technical Papers

Inhibition Effect of CO on Hydrogen Permeation Through a Pd/Al2O3 Composite Membrane: A Comprehensive Study on Concentration Polarization and Competitive Adsorption Effect

, , , , , , , , & show all
Pages 680-689 | Received 09 Jun 2019, Accepted 29 Apr 2020, Published online: 09 Jul 2020
 

Abstract

Palladium membranes have been used for hydrogen purification for a long time due to their infinite selectivity and excellent permeation performance. However, a coexisting impurity gas, like CO, will inhibit the hydrogen permeation flux that results from the concentration polarization (CP) and competitive adsorption inhibition effects. This work aims to investigate the two inhibition effects separately and quantitatively under different temperatures and pressures. Therefore, permeation experiments of H2 (90%)/N2 (10% to 5%)/CO (0% to 5%) mixtures have been carried out at temperatures ranging from 623 to 698 K and H2 partial pressure drops from 30 to 100 kPa. The permeation of H2/N2 is used to study CP because the competitive adsorption of N2 can be ignored. Then, the further H2 flux reduction of xH2/(1-x-z)N2/zCO permeation relative to that of xH2/(1-x)N2 permeation can be attributed to the competitive adsorption of CO. The experimental results show that the CP effect would be enhanced by increasing temperature and pressure, while the CO competitive adsorption effect would be depressed. Meanwhile, the CO inhibition effect generally becomes smaller when the membrane thickness becomes thicker. Based on the results in this work, operation conditions are suggested to be at a higher temperature and higher pressure for a thicker Pd membrane in consideration of increasing the H2 permeation flux and reducing the CO adsorption effect. The experimental and calculation methods used in this work can provide a new way for investigating the inhibition effect on hydrogen permeation caused by other nonpermeable gases like CO2, Ar, or H2O.

Acknowledgments

This work was financially supported by the National Key Research & Development Program of China (2017YFE0301503, 2017YFE0300303) and the National Natural Science Foundation of China under grant number 21601170.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.