178
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Modified hyper-viscoelastic damage evolution constitutive model for polyurethane materials – an experimental and numerical investigation

, , , & ORCID Icon
Pages 3666-3677 | Received 21 Dec 2022, Accepted 14 Feb 2023, Published online: 04 Apr 2023
 

Abstract

Elastomeric materials are widely used in different industries due to their excellent capability to withstand different loading types. There are significant challenges to the efficient design of elastomeric structures because of the rate-dependent and highly nonlinear behavior of this type of material. In this study, a damage zone model was employed to simulate the material behavior and damage evolution in polyurethane (PU) elastomers with different shore hardness. This model consists of three sections, hyper viscoelastic constitutive model, damage initiation, and damage evolution using a hyper viscoelastic traction-separation law. To simulate the nonlinear behavior of PU, a dynamic increase factor (DIF) implemented into the Mooney–Rivlin strain density function with 9 parameters. The material characteristics are specified by performing the experimental tests for three different shore hardness. In this study, a user-defined subroutine (VUMAT) was developed to predict the damage evolution in the pure shear tearing specimen of PU elastomers. The results verification proves a good agreement between the FEA simulation and experimental data. Therefore, the developed numerical analysis procedure can be used to investigate the damage initiation and evolution in elastomeric materials.

Disclosure statement

A disclosure statement reports no conflict of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.