178
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Modified hyper-viscoelastic damage evolution constitutive model for polyurethane materials – an experimental and numerical investigation

, , , & ORCID Icon
Pages 3666-3677 | Received 21 Dec 2022, Accepted 14 Feb 2023, Published online: 04 Apr 2023

References

  • M. C. Lin, J. H. Lin, and L. Bao, Thermoplastic polyurethane reinforced with continuous carbon fiber tows: manufacturing technique and fabric property evaluation, Appl. Compos. Mater., vol. 28, no. 5, pp. 1531–1546, 2021. DOI: 10.1007/s10443-021-09867-1.
  • M. R. Gurvich, Fracture modelling and characteriation of elastomeric materials and composites for design application, Rubber Chem. Technol., vol. 83, pp. 368–379, 2010. DOI: 10.5254/1.3493425.
  • A. U. Nair, H. Lobo, and A. M. Bestelmeyer, Characterization of damage in hyperelastic terials using standard test methods and Abaqus, SIMULIA Customer Conference, May 18–21, 2009, The Brewery, London, England.
  • E. Elmukashfi1, and M. Kroon, Numerical modeling and analysis of dynamic crack propagation in rubber, 13th International Conference on Fracture, June 16–21, 2013. Beijing, China
  • Venkata Rama Lakshmi Preethi Bahadursha. Tearing of styrene butadiene rubber using finite element analysis, Master Thesis, The Graduate Faculty of The University of Akron, 2015.
  • Y. Lev and K. Volokh, Modeling crack propagation in rubber, 14th International LS-DYNA Conference, 12 - 14 June 2016, Detroit,USA.
  • K. Volokh, Review of the energy limiters approach to modeling failure of rubber, Rubber Chem. Technol., vol. 86, pp. 470– 487, 2013. DOI: 10.5254/rct.13.87948.
  • A. Hamdi, S. Guessasma, and M. N. Abdelaziz, Fracture of elastomers by cavitation, Mater. Design, vol. 53, pp. 497–503, 2014. DOI: 10.1016/j.matdes.2013.06.058.
  • B. Li, V. Rama Lakshmi Preethi Bahadursha, and M. S. Hoo Fatt, Predicting failure in rubber membranes: an experimental-numerical approach, Eng. Fail. Anal., vol. 90, no. 2018, pp. 404–424, 2018. DOI: 10.1016/j.engfailanal.2018.04.003.
  • A. A. Griffith, The theory of rupture. In: The Proceeding of the First International Congress for Applied Mechanics, Biezeno, C. B., and Burgers, J. M. editors. J. Waltman, jr., Delft, the Netherlands, 1925. pp. 55–63. DOI: 10.12691/ajme-5-3-4.
  • R. S. Rivlin, and A. G. Thomas, Rupture of rubber. I, characteristic energy for tearing, J. Polym. Sci., vol. 10, pp. 291–318, 1953. DOI: 10.1002/pol.1953.120100303.
  • L. Zhan, S. Wang, S. Qu, P. Steinmann, and R. Xiao, A new micro–macro transition for hyperelastic materials, J. Mech. Phys. Solids, vol. 171, pp. 105156, 2023. DOI: 10.1016/j.jmps.2022.105156.
  • S. Shen, D. Zhong, S. Qu, and R. Xiao, A hyperelastic-damage model based on the strain invariants, J. Extreme Mech. Lett., vol. 52, pp. 101641, 2022. DOI: 10.1016/j.eml.2022.101641.
  • M. Jahanmardi, H. Hosseini Toudeshky, and M. S. Goodarzi, Experimental hyper-viscoelastic constitutive model for numerical study of elastomer materials, Appl Nanosci., vol. 12, no. 11, pp. 3655–3663, 2022. DOI: 10.1007/s13204-022-02554-y.
  • H. M. C. C. Somarathna, S. N. Raman, D. Mohotti, A. A. Mutalib, and K. H. Badri, Badri,” hyper-viscoelastic constitutive models for predicting the material behavior of polyurethane under varying strain rates and uniaxial tensile loading, Construct. Build. Mater., vol. 236, pp. 117417, 2020. DOI: 10.1016/j.conbuildmat.2019.117417.
  • G. J. Lake, Fatigue and fracture of elastomers, Rubber Chem. Technol., vol. 68, no. 3, pp. 435–460, 1995. DOI: 10.5254/1.3538750.
  • G. J. Lake, C. C. Lawrence, and A. G. Thomas, High-speed fracture of elastomers: part I, Rubber Chem. Technol., vol. 73, no. 5, pp. 801–817, 2000. DOI: 10.3390/ma14030601.
  • G. J. Lake and A. G. Thomas, Strength. In: Engineering with Rubber, How to Design Rubber Components, 2nd ed., A.N. Gent, editor, Hanser Gardner Publications, Cincinnati, pp. 120–130, 2001.
  • G. J. Lake, Fracture mechanics and its application to failure in rubber articles, Rubber Chem. Technol., vol. 76, no. 3, pp. 567–591, 2003. DOI: 10.5254/1.3547761.
  • ASTM Standard D 412-98a, 2002, “Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers— Tension”, ASTM International, West Conshohocken, PA 19428–2959, United States.
  • A. G. Thomas, The development of fracture mechanics for elastomers, Rubber Chem. Technol., vol. 67, no. 3, pp. G50–G60, 1994. DOI: 10.5254/1.3538688.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.