343
Views
18
CrossRef citations to date
0
Altmetric
Articles

Short-term wind speed forecasting based on random forest model combining ensemble empirical mode decomposition and improved harmony search algorithm

ORCID Icon
Pages 332-348 | Received 07 Dec 2019, Accepted 15 Feb 2020, Published online: 26 Feb 2020
 

ABSTRACT

Wind speed forecasting plays an important role in power grid dispatching management. This article proposes a short-term wind speed forecasting method based on random forest model combining ensemble empirical modal decomposition and improved harmony search algorithm. First, the initial wind speed data set is decomposed into several ensemble empirical mode functions by EEMD, then feature extraction of each sub-modal IMF is performed using fast Fourier transform to solve the cycle of each sub-modal IMF. Next, combining the high-performance parameter optimization ability of the improved harmony search algorithm, two optimal parameters of random forest model, number of decision trees, and number of split features are determined. Finally, the random forest model is used to forecast the processing results of each submodal IMF. The proposed model is applied to the simulation analysis of historical wind data of Chaoyang District, Liaoning Province from April 27, 2015 to May 22, 2015. To illustrate the suitability and superiority of the EEMD-RF-IHS model, three types of models are used for comparison: single models including ANN, SVM, RF; EMD combination models including EMD-ANN, EMD-SVM, EMD-RF; EEMD combination models including EEMD-ANN, EEMD-SVM, EEMD-RF. The analysis results of evaluation indicators show that the proposed model can effectively forecast short-term wind data with high stability and precision, providing a reference for forecasting application in other industry fields.

Additional information

Funding

This work was supported by the Education Teaching Steering Committee of Ministry of Education [2018GGJCKT144].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.