343
Views
18
CrossRef citations to date
0
Altmetric
Articles

Short-term wind speed forecasting based on random forest model combining ensemble empirical mode decomposition and improved harmony search algorithm

ORCID Icon
Pages 332-348 | Received 07 Dec 2019, Accepted 15 Feb 2020, Published online: 26 Feb 2020

References

  • Abuella, M., and B. Chowdhury. 2019. Forecasting of solar power ramp events: Apost-processing approach. Renewable Energy 133:1380–92. doi:10.1016/j.renene.2018.09.005.
  • Ahmad, T., and H. Chen. 2019. Nonlinear autoregressive and random forest approaches to forecasting electricity load for utility energy management systems. Sustainable Cities and Society 45:460–73. doi:10.1016/j.scs.2018.12.013.
  • Ali, M., and R. Prasad. 2019. Significant wave height forecasting via an extreme learning machine model integrated with improved complete ensemble empirical mode decomposition. Renewable and Sustainable Energy Reviews 104:281–95. doi:10.1016/j.rser.2019.01.014.
  • Askarzadeh, A., and M. Zebarjadi. 2014. Wind power modeling using harmony search with a novel parameter setting approach. Journal of Wind Engineering and Industrial Aerodynamics 135:70–75. doi:10.1016/j.jweia.2014.10.012.
  • Bagiorgas, H. S., M. Giouli, S. Rehman, and L. M. Al-Hadhrami. 2011. Weibull parameters estimation using four different methods and most energy-carrying wind speed analysis. International Journal of Green Energy 8 (5):529–54. doi:10.1080/15435075.2011.588767.
  • Bao, L., T. Gneiting, E. P. Grimit, P. Guttorp, and A. E. Raftery. 2010. Bias correction and Bayesian model averaging for ensemble forecasts of surface wind direction. Monthly Weather Review 138:1811–21. doi:10.1175/2009MWR3138.1.
  • Bhatti, A. R., Z. Salam, B. Sultana, N. Rasheed, A. B. Awan, U. Sultana, and M. Younas. 2019. Optimized sizing of photovoltaic grid‐connected electric vehicle charging system using particle swarm optimization. International Journal of Energy Research 43:500–22. doi:10.1002/er.4287.
  • Breiman, L. 1996. Bagging predictors. Machine Learning 24:123–40. doi:10.1007/BF00058655.
  • Breiman, L. 2001. Random forests. Machine Learning 45:5–32. doi:10.1023/A:1010933404324.
  • Brown, B. G., R. W. Katz, and A. H. Murphy. 1984. Time series models to simulate and forecast wind speed and wind power. Journal of Climate and Applied Meteorology 23 (8):1184–95. doi:10.1175/1520-0450(1984)023<1184:TSMTSA>2.0.CO;2.
  • Cadenas, E., and W. Rivera. 2009. Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks. Renewable Energy 34:274–78. doi:10.1016/j.renene.2008.03.014.
  • Cassola, F., and M. Burlando. 2012. Wind speed and wind energy forecast through Kalman filtering of numerical weather prediction model output. Applied Energy 99:154–66. doi:10.1016/j.apenergy.2012.03.054.
  • Davò, F., S. Alessandrini, S. Sperati, L. D. Monache, D. Airoldi, and M. T. Vespucci. 2016. Post-processing techniques and principal component analysis for regional wind power and solar irradiance forecasting. Solar Energy 134:327–38. doi:10.1016/j.solener.2016.04.049.
  • Dawson, C. W., R. J. Abrahart, and L. M. See. 2007. HydroTest:aweb-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts. Environmental Modelling & Software 22:1034–52. doi:10.1016/j.envsoft.2006.06.008.
  • Deris, A. M., A. M. Zain, and R. Sallehuddin. 2013. Hybrid GR-SVM for prediction of surface roughness in abrasive water jet machining. Meccanica 48:1937–45. doi:10.1007/s11012-016-0542-8.
  • Dhillon, J., A. Kumar, and S. K. Singal. 2016. A stochastic approach for the operation of a wind and pumped storage plant under a deregulated environment. International Journal of Green Energy 13 (1):55–62. doi:10.1080/15435075.2014.909358.
  • Du, J., H. Sun, Y. Cao, Y. Liu, L. Pan, and Y. Liu. 2019. Ensemble interpolation of missing wind turbine nacelle wind speed data in wind farms based on robust particle swarm optimized generalized regression neural network. International Journal of Green Energy 16 (14):1210–19. doi:10.1080/15435075.2019.1671396.
  • Ersoz, S., T. C. Akinci, H. S. Nogay, and G. Dogan. 2013. Determination of wind energy potential in Kirklareli-Turkey. International Journal of Green Energy 10 (1):103–16. doi:10.1080/15435075.2011.641702.
  • Geem, Z. W. 2008. Novel derivative of harmony search algorithm for discrete design variables. Applied Mathematics and Computation 199:223–30. doi:10.1016/j.amc.2007.09.049.
  • Geem, Z. W., J. H. Kim, and G. V. Loganathan. 2001. A new heuristic optimization algorithm: Harmonysearch. Simulation 76:60–68. doi:10.1177/003754970107600201.
  • Hao, Y., and C. Tian. 2019. A novel two-stage forecasting model based on error factor and ensemble method for multi-step wind power forecasting. Applied Energy 238:368–83. doi:10.1016/j.apenergy.2019.01.063.
  • Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. Yen, C. C. Tung, and H. H. Liu. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the royal society of London. Series A:mathematical. Physical and Engineering Sciences 454:903–95. doi:10.1098/rspa.1998.0193.
  • Kaba, K., H. M. Kandirmaz, and M. Avci. 2017. Estimation of daily sunshine duration using support vector machines. International Journal of Green Energy 14 (4):430–41. doi:10.1080/15435075.2016.1265971.
  • Kamal, L., and Y. Z. Jafri. 1997. Time series models to simulate and forecast hourly averaged wind speed in Quetta, Pakistan. Solar Energy 61:23–32. doi:10.1016/S0038-092X(97)00037-6.
  • Kani, S. P., G. H. Riahy, and D. Mazhari. 2011. An innovative hybrid algorithm for very short-term wind speed prediction using linear prediction and markov chain approach. International Journal of Green Energy 8 (2):147–62. doi:10.1080/15435075.2010.548887.
  • Kavasseri, R. G., and K. Seetharaman. 2009. Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy 34:1388–93. doi:10.1016/j.renene.2008.09.006.
  • Kumar, D., and K. Chatterjee. 2017. Design and analysis of artificial bee-colony-based MPPT algorithm for DFIG-based wind energy conversion systems. International Journal of Green Energy 14 (4):416–29. doi:10.1080/15435075.2016.1261709.
  • Lahouar, A., and J. B. H. Slama. 2015. Day-ahead load forecast using random forest and expert input selection. Energy Conversion and Management 103:1040–51. doi:10.1016/j.enconman.2015.07.041.
  • Lahouar, A., and J. B. H. Slama. 2017. Hour-ahead wind power forecast based on random forests. Renewable Energy 109:529–41. doi:10.1016/j.renene.2017.03.064.
  • Landberg, L. 1999. Short-term prediction of the power production from wind farms. Journal of Wind Engineering and Industrial Aerodynamics 80:207–20. doi:10.1016/S0167-6105(98)00192-5.
  • Lazić, L., G. Pejanović, and M. Živković. 2010. Wind forecasts for wind power generation using the Eta model. Renewable Energy 35:1236–43. doi:10.1016/j.renene.2009.10.028.
  • Lerch, S., and T. L. Thorarinsdottir. 2013. Comparison of non-homogeneous regression models for probabilistic wind speed forecasting. Tellus A:Dynamic Meteorology and Oceanography 65 (1):21206. doi:10.3402/tellusa.v65i0.21206.
  • Li, C., Y. Tao, W. Ao, S. Yang, and Y. Bai. 2018. Improving forecasting accuracy of daily enterprise electricity consumption using a random forest based on ensemble empirical mode decomposition. Energy 165:1220–27. doi:10.1016/j.energy.2018.10.113.
  • Li, G., and J. Shi. 2010. On comparing three artificial neural networks for wind speed forecasting. Applied Energy 87:2313–20. doi:10.1016/j.apenergy.2009.12.013.
  • Li, Y., H. Shi, F. Han, Z. Duan, and H. Liu. 2019. Smart wind speed forecasting approach using various boosting algorithms, big multi-step forecasting strategy. Renewable Energy 135:540–53. doi:10.1016/j.renene.2018.12.035.
  • Lin, Y., U. Kruger, J. Zhang, Q. Wang, L. Lamont, and L. E. Chaar. 2015. Seasonal analysis and prediction of wind energy using random forests and ARX model structures. IEEE Transactions on Control Systems Technology 23:1994–2002. doi:10.1109/TCST.2015.2389031.
  • Liu, D., D. Niu, H. Wang, and L. Fan. 2014. Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm. Renewable Energy 62:592–97. doi:10.1016/j.renene.2013.08.011.
  • Liu, H., Z. Duan, F. Z. Han, and Y. F. Han. 2018. Big multi-step wind speed forecasting model based on secondary decomposition, ensemble method and error correction algorithm. Energy Conversion and Management 156:525–41. doi:10.1016/j.enconman.2017.11.049.
  • Liu, H., X. Mi, and Y. Li. 2018. Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM. Energy Conversion and Management 159:54–64. doi:10.1016/j.enconman.2018.01.010.
  • Liu, H., J. Shi, and E. Erdem. 2013. An integrated wind power forecasting methodology: Interval estimation of wind speed, operation probability of wind turbine, and conditional expected wind power output of a wind farm. International Journal of Green Energy 10 (2):151–76. doi:10.1080/15435075.2011.647170.
  • Liu, Y., J. Shi, Y. Yang, and S. Han. 2009. Piecewise support vector machine model for short-term wind-power prediction. International Journal of Green Energy 6 (5):479–89. doi:10.1080/15435070903228050.
  • Ludwig, N., S. Feuerriegel, and D. Neumann. 2015. Putting big data analytics to work: Featureselection for forecasting electricity prices using the LASSO and random forests. Journal of Decision Systems 24:19–36. doi:10.1080/12460125.2015.994290.
  • Luo, X., J. Sun, L. Wang, W. Wang, W. Zhao, J. Wu, J. Wu, and Z. Zhang. 2018. Short-term wind speed forecasting via stacked extreme learning machine with generalized correntropy. IEEE Transactions on Industrial Informatics 14:4963–71. doi:10.1109/TII.2018.2854549.
  • Maatallah, O. A., A. Achuthan, K. Janoyan, and P. Marzocca. 2015. Recursive wind speed forecasting based on Hammerstein Auto-Regressive model. Applied Energy 145:191–97. doi:10.1016/j.apenergy.2015.02.032.
  • Mahdavi, M., M. Fesanghary, and E. Damangir. 2007. An improved harmony search algorithm for solving optimization problems. Applied Mathematics and Computation 188:1567–79. doi:10.1016/j.amc.2006.11.033.
  • Philippopoulos, K., D. Deligiorgi, and G. Karvounis. 2012. Wind speed distribution modeling in the greater area of Chania, Greece. International Journal of Green Energy 9 (2):174–93. doi:10.1080/15435075.2011.622020.
  • Prasad, R., R. C. Deo, Y. Li, and T. Maraseni. 2019. Weekly soil moisture forecasting with multivariate sequential, ensemble empirical mode decomposition and boruta-random forest hybridizer algorithm approach. Catena 177:149–66. doi:10.1016/j.catena.2019.02.012.
  • Qin, S., J. Wang, J. Wu, and G. Zhao. 2016. A hybrid model based on smooth transition periodic autoregressive and elman artificial neural network for wind speed forecasting of the Hebei region in China. International Journal of Green Energy 13 (6):595–607. doi:10.1080/15435075.2016.1212200.
  • Roulston, M. S., D. T. Kaplan, J. Hardenberg, and L. A. Smith. 2003. Using medium-range weather forcasts to improve the value of wind energy production. Renewable Energy 28:585–602. doi:10.1016/S0960-1481(02)00054-X.
  • Salcedo-Sanz, S., A. Pastor-Sánchez, J. Del Ser, L. Prieto, and Z. W. Geem. 2015. A coral reefs optimization algorithm with harmony search operators for accurate wind speed prediction. Renewable Energy 75:93–101. doi:10.1016/j.renene.2014.09.027.
  • Salkuti, S. R. 2019. Optimal power flow using multi-objective glowworm swarm optimization algorithm in a wind energy integrated power system. International Journal of Green Energy 16 (15):1547–61. doi:10.1080/15435075.2019.1677234.
  • Saravanakumar, R., and D. Jena. 2016. Nonlinear control of a wind turbine based on nonlinear estimation techniques for maximum power extraction. International Journal of Green Energy 13 (3):309–19. doi:10.1080/15435075.2014.952424.
  • Sharma, S. K., and S. Ghosh. 2016. Short-term wind speed forecasting: Application of linear and non-linear time series models. International Journal of Green Energy 13 (14):1490–500. doi:10.1080/15435075.2016.1212200.
  • Shi, J., X. Qu, and S. Zeng. 2011. Short-term wind power generation forecasting: Direct versus indirect ARIMA-based approaches. International Journal of Green Energy 8 (1):100–12. doi:10.1080/15435075.2011.546755.
  • Sloughter, J. M., T. Gneiting, and A. E. Raftery. 2010. Probabilistic wind speed forecasting using ensembles and Bayesian model averaging. Journal of the American Statistical Association 105:25–35. doi:10.1198/jasa.2009.ap08615.
  • Song, C., D. Liu, J. Wu, H. Wang, Y. Zhao, X. Zhao, and F. Dong. 2008. Multi-objective differential planning based on improved harmony search algorithm for power network. Electric Power Automation Equipment 34:142–48. doi:10.3969/j.issn.1006-6047.2014.11.022.
  • Spyers-Ashby, J. M., P. G. Bain, and S. J. Roberts. 1998. A comparison of fast fourier transform (FFT) and autoregressive (AR) spectral estimation techniques for the analysis of tremor data. Journal of Neuroscience Methods 83:35–43. doi:10.1016/S0165-0270(98)00064-8.
  • Tascikaraoglu, A., and M. Uzunoglu. 2014. A review of combined approaches for prediction of short-term wind speed and power. Renewable and Sustainable Energy Reviews 34:243–54. doi:10.1016/j.rser.2014.03.033.
  • Ul Haque, A., and J. Meng. 2011. Short-term wind speed forecasting based on fuzzy ARTMAP. International Journal of Green Energy 8 (1):65–80. doi:10.1080/15435075.2010.529784.
  • Wang, D., H. Luo, O. Grunder, and Y. Lin. 2017. Multi-step ahead wind speed forecasting using an improved wavelet neural network combining variational mode decomposition and phase space reconstruction. Renewable Energy 113:1345–58. doi:10.1016/j.renene.2017.06.095.
  • Wang, J., L. Li, D. Niu, and Z. Niu. 2012a. An annual load forecasting model based on support vector regression with differential evolution algorithm. Applied Energy 94:65–70. doi:10.1016/j.apenergy.2012.01.010.
  • Wang, J. Z., and Y. Wang. 2017. A novel wind speed forecasting model for wind farms of Northwest China. International Journal of Green Energy 14 (5):463–78. doi:10.1080/15435075.2016.1278373.
  • Wang, S., N. Zhang, L. Wu, and Y. Wu. 2016. Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method. Renewable Energy 94:629–36. doi:10.1016/j.renene.2016.03.103.
  • Wang, T., M. Zhang, Q. Yu, and H. Zhang. 2012b. Comparing the applications of EMD and EEMD on time–frequency analysis of seismic signal. Journal of Applied Geophysics 83:29–34. doi:10.1016/j.jappgeo.2012.05.002.
  • Wei, N., C. Li, X. Peng, Y. Li, and F. Zeng. 2019. Daily natural gas consumption forecasting via the application of a novel hybrid model. Applied Energy 250:358–68. doi:10.1016/j.apenergy.2019.05.023.
  • Willmott, C. J. 1984. On the evaluation of model performance in physical geography. Spatial Statistics and Models 40:443–60. doi:10.1007/978-94-017-3048-8_23.
  • Wu, J., J. Wang, S. Qin, and H. Lu. 2016. Suitable error evaluation criteria selection in the wind energy assessment via the K-means clustering algorithm. International Journal of Green Energy 13 (11):1145–62. doi:10.1080/15435075.2016.1175351.
  • Wu, Z., and N. E. Huang. 2009. Ensemble empirical mode decomposition: Anoise-assisted data analysis method. Advances in Adaptive Data Analysis 1:1–41. doi:10.1142/S1793536909000047.
  • Yu, C., Y. Li, and M. Zhang. 2017. Comparative study on three new hybrid models using elman neural network and empirical mode decomposition based technologies improved by singular spectrum analysis for hour-ahead wind speed forecasting. Energy Conversion and Management 147:75–85. doi:10.1016/j.enconman.2017.05.008.
  • Yu, M., J. Zhu, and L. Yang. 2019. Short-term load prediction model combining FEW and IHS algorithm. Archives of Electrical Engineering 68:907–23. doi:10.24425/aee.2019.130691.
  • Zeng, B., H. Duan, Y. Bai, and W. Meng. 2018. Forecasting the output of shale gas in China using an unbiased grey model and weakening buffer operator. Energy 151:238–49. doi:10.1016/j.energy.2018.03.045.
  • Zhang, C., H. Wei, X. Zhao, T. Liu, and K. Zhang. 2016. A Gaussian process regression based hybrid approach for short-term wind speed prediction. Energy Conversion and Management 126:1084–92. doi:10.1016/j.enconman.2016.08.086.
  • Zhang, D., X. Peng, K. Pan, and Y. Liu. 2019. A novel wind speed forecasting based on hybrid decomposition and online sequential outlier robust extreme learning machine. Energy Conversion and Management 180:338–57. doi:10.1016/j.enconman.2018.10.089.
  • Zhang, Y., C. Zhang, Y. Zhao, and S. Gao. 2018. Wind speed prediction with RBF neural network based on PCA and ICA. Journal of Electrical Engineering 69:148–55. doi:10.2478/jee-2018-0018.
  • Zhou, J., J. Shi, and G. Li. 2011. Fine tuning support vector machines for short-term wind speed forecasting. Energy Conversion and Management 52:1990–98. doi:10.1016/j.enconman.2010.11.007.
  • Zuluaga, C. D., M. A. Alvarez, and E. Giraldo. 2015. Short-term wind speed prediction based on robust Kalman filtering: Anexperimental comparison. Applied Energy 156:321–30. doi:10.1016/j.apenergy.2015.07.043.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.