445
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Collection of airborne ultrafine cellulose nanocrystals by impinger with an efficiency mimicking deposition in the human respiratory system

, , ORCID Icon, , ORCID Icon & ORCID Icon
 

Abstract

As cellulose nanocrystals (CNCs) are increasing in production, establishing safe workplace practices in industry will be paramount to their continued use and growth. Particles other than CNCs with similar high aspect ratios have exhibited toxicity on inhalation. Safeguards are needed to monitor concentrations of CNCs in air in industrial and laboratory settings to protect workers. However, because of their size, morphology, and chemical makeup, CNCs are difficult to characterize and differentiate from other dust and cellulose products. This work is focused on developing an effective method of characterizing the concentration of airborne ultrafine CNCs that may deposit in the respiratory tract. CNCs were tagged with rhodamine b (RhB-CNCs) for improved visualization and characterized using UV-vis spectroscopy (UV-vis), transmission electron microscopy (TEM), and dynamic light scattering (DLS), then aerosolized and collected via a novel method using plastic impingers. Concentration of RhB-CNCs was measured using UV-vis and scanning mobility particle sizer (SMPS). The plastic impinger with 3D-printed nozzle collected airborne CNCs at an efficiency that improves upon commercially available impingers for relevant particle sizes.

Acknowledgments

The authors acknowledge the assistance of Kelly Stinson-Bagby for imaging samples via TEM and use of the facilities at the Nanoscale Characterization and Fabrication Laboratory (NCFL) at Virginia Polytechnic Institute. PCitation3Nano, a public-private partnership with the USDA Forest Service, provided funding for this research.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.