445
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Collection of airborne ultrafine cellulose nanocrystals by impinger with an efficiency mimicking deposition in the human respiratory system

, , ORCID Icon, , ORCID Icon & ORCID Icon

References

  • Eichhorn, S.J., A. Dufresne, M. Aranguren, N.E. Marcovich, J.R. Capadona, S.J. Rowan et al.: Review: current international research into cellulose nanofibres and nanocomposites. Journal of Materials Science 45(1):1–33 (2010).
  • Samir, M., F. Alloin, and A. Dufresne: Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626 (2005).
  • Paakko, M., M. Ankerfors, H. Kosonen, A. Nykanen, S. Ahola, M. Osterberg et al.: Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941 (2007).
  • Paakko, M., J. Vapaavuori, R. Silvennoinen, H. Kosonen, M. Ankerfors, T. Lindstrom et al.: Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4(12):2492–2499 (2008).
  • Capadona, J.R., K. Shanmuganathan, S. Triftschuh, S. Seidel, S.J. Rowan, and C. Weder: Polymer Nanocomposites with Nanowhiskers Isolated from Microcrystalline Cellulose. Biomacromolecules 10(4):712–716 (2009).
  • Hult, E.L., T. Iversen, and J. Sugiyama: Characterization of the supermolecular structure of cellulose in wood pulp fibres. Cellulose 10(2):103–110 (2003).
  • Heyder, J.: Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery. Proc Am Thorac Soc. 1(4):315–320 (2004).
  • Oberdörster, G., Z. Sharp, V. Atudorei, A. Elder, R. Gelein, W. Kreyling et al.: Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol. 16(6-7):437–445 (2004).
  • Dong, J., Y. Shang, K. Inthavong, J. Tu, R. Chen, R. Bai et al.: Comparative Numerical Modeling of Inhaled Nanoparticle Deposition in Human and Rat Nasal Cavities. Toxicol Sci. 152(2):284–296 (2016).
  • Foster, E.J., R.J. Moon, U.P. Agarwal, M.J. Bortner, J. Bras, S. Camarero-Espinosa et al.: Current characterization methods for cellulose nanomaterials. Chem Soc Rev. 47(8):2609–2679 (2018).
  • Yanamala, N., M.T. Farcas, M.K. Hatfield, E.R. Kisin, V.E. Kagan, C.L. Geraci et al.: In Vivo Evaluation of the Pulmonary Toxicity of Cellulose Nanocrystals: A Renewable and Sustainable Nanomaterial of the Future. ACS Sustainable Chemistry & Engineering 2(7):1691–1698 (2014).
  • Du, L., K. Arnholt, S. Ripp, G. Sayler, S. Wang, C. Liang et al.: Biological toxicity of cellulose nanocrystals (CNCs) against the luxCDABE-based bioluminescent bioreporter Escherichia coli 652T7. Ecotoxicology 24(10):2049–2053 (2015).
  • Clift, M.J.D., E.J. Foster, D. Vanhecke, D. Studer, P. Wick, P. Gehr et al.: Investigating the Interaction of Cellulose Nanofibers Derived from Cotton with a Sophisticated 3D Human Lung Cell Coculture. Biomacromolecules 12(10):3666–3673 (2011).
  • Seehra, M., and A. Stefaniak: X-ray diffraction as a measurement tool for biodegradability of cellulose nanocrystals. In Production and Applications of Cellulose Nanomaterials, M.T. Postek, R.J. Moon, A. Rudie and M. Bilodeau (eds.). Peachtree Corners, GA: TAPPI PRESS, 2013.
  • Roman, M.: Toxicity of Cellulose Nanocrystals: A Review. Industrial Biotechnology 11(1):25–33 (2015).
  • Vartiainen, J., T. Pöhler, K. Sirola, L. Pylkkänen, H. Alenius, J. Hokkinen et al.: Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose. Cellulose 18(3):775–786 (2011).
  • Martinez, K., A. Eastlake, A. Rudie, and C. Geracis: Occupational Exposure Characterization during the manufacture of cellulose nanomaterials. In Production and Applications of Cellulose Nanomaterials, M. Potstek, R. Moon, A. Rudie and M. Bilodeau (eds.), pp. 61–66. Peachtree Corners, GA.: TAPPI PRESS, 2013.
  • Shatkin, J.A., and B. Kim: Cellulose nanomaterials: life cycle risk assessment, and environmental health and safety roadmap. Environmental Science: Nano 2(5):477–499 (2015).
  • Lin, X., et al.: Effect of sampling time on the collection efficiency of all-glass impingers. American Industrial Hygiene Association Journal 58(7):480–488 (1997).
  • Grinshpun, S.A., K. Willeke, V. Ulevicius, A. Juozaitis, S. Terzieva, J. Donnelly et al.: Effect of Impaction, Bounce and Reaerosolization on the Collection Efficiency of Impingers. Aerosol Science and Technology 26(4): 326–342 (1997).
  • Spanne, M., P. Grzybowski, and M. Bohgard: Collection Efficiency for Submicron Particles of a Commonly Used Impinger. American Industrial Hygiene Association Journal 60(4):540–544 (1999).
  • Wei, Z., R.C. Rosario, and L.D. Montoya: Collection efficiency of a midget impinger for nanoparticles in the range of 3–100 nm. Atmospheric Environment 44(6):872–876 (2010).
  • Hogan, C.J., E.M. Kettleson, M.H. Lee, B. Ramaswami, L.T. Angenent, and P. Biswas: Sampling methodologies and dosage assessment techniques for submicrometre and ultrafine virus aerosol particles. Journal of Applied Microbiology 99(6):1422–1434 (2005).
  • Miljevic, B., R.L. Modini, S.E. Bottle, and Z.D. Ristovski: On the efficiency of impingers with fritted nozzle tip for collection of ultrafine particles. Atmospheric Environment 43(6):1372–1376 (2009).
  • Cena, L.G., R. Anthony, and T.M. Peters: A Personal Nanoparticle Respiratory Deposition (NRD) Sampler. Environmental Science & Technology 45:6483–6490 (2011).
  • Park, J.H., I.A. Mudunkotuwa, L.W.D. Mines, T.R. Anthony, V.H. Grassian, and T.M. Peters: A Granular Bed for Use in a Nanoparticle Respiratory Deposition Sampler. Aerosol Science and Technology 49(3):179–187 (2015).
  • Hinds, W.C.: Aerosol technology: properties, behavior, and measurement of airborne particles: Wiley, 1999.
  • Dufresne, A.: Nanocellulose. Berlin/Boston, GERMANY: De Gruyter, 2013.
  • O’Shaughnessy, P.T., and L.H. Schmoll: Particle Count Statistics Applied to the Penetration of a Filter Challenged with Nanoparticles. Aerosol science and technology: the journal of the American Association for Aerosol Research 47(6):616–625 (2013).
  • Haghpanah, J.S., R. Tu, S. Da Silva, D. Yan, S. Mueller, C. Weder et al.: Bionanocomposites: differential effects of cellulose nanocrystals on protein diblock copolymers. Biomacromolecules 14(12):4360–4367 (2013).
  • Stinson-Bagby, K.L., R. Roberts, and E.J. Foster: Effective cellulose nanocrystal imaging using transmission electron microscopy. Carbohydr Polym. 186:429–438 (2018).
  • Chen, B.T., D. Schwegler-Berry, A. Cumpston, J. Cumpston, S. Friend, S. Stone et al.: Performance of a scanning mobility particle sizer in measuring diverse types of airborne nanoparticles: Multi-walled carbon nanotubes, welding fumes, and titanium dioxide spray. J Occup Environ Hyg. 13(7):501–518 (2016).
  • ICRP: Human respiratory tract model for radiological protection. Publication 66, Pergamon Press, Oxford, UK. Ann. ICRP 24:272 (1994).
  • Moon, R.J., A. Martini, J. Nairn, J. Simonsen, and J. Youngblood: Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994 (2011).
  • Hosseinidoust, Z., M.N. Alam, G. Sim, N. Tufenkji, and T.G. van de Ven: Cellulose nanocrystals with tunable surface charge for nanomedicine. Nanoscale 7(40):16647–16657 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.