334
Views
0
CrossRef citations to date
0
Altmetric
Report

Estimation of volatile organic compound exposure concentrations and time to reach a specific dermal absorption using physiologically based pharmacokinetic modeling

 

Abstract

A procedure was proposed to estimate dermal exposures based on a physiologically based pharmacokinetic (PBPK) model developed in rats. The study examined vapor concentrations ranging from 500 to 10,000 ppm for dibromomethane and 2,500 to 40,000 ppm for bromochloromethane. These concentrations were reconstructed based on chemical blood levels measured in 4 hr, with errors varying from 0.0% to 52.0%. The PBPK approach adequately predicted the blood concentrations and helped simulate contaminant transport through the stratum corneum and distribution in the body compartments. The proposed technique made it possible to estimate the skin absorption time (SAT) obtained from acute inhalation toxicity data. An inverse relationship exists between the SAT and exposure concentration. The method can be helpful in toxicology and risk assessment of hazardous volatile organic compounds.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was funded by the ARO Grant W911NF-21-1-0084.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.