322
Views
0
CrossRef citations to date
0
Altmetric
Report

Estimation of volatile organic compound exposure concentrations and time to reach a specific dermal absorption using physiologically based pharmacokinetic modeling

References

  • Albanese RA, Banks HT, Evans MV, Potter LK. 2002. Physiologically based pharmacokinetic models for the transport of trichloroethylene in adipose tissue. Bull Math Biol. 64(1):97–131. doi:10.1006/bulm.2001.0268.
  • Anderson SE, Meade BJ. 2014. Potential health effects associated with dermal exposure to occupational chemicals. Environ Health Insights. 8(Suppl 1):51–62. doi:10.4137/EHI.S15258.
  • Barber ED, Teetsel NM, Kolberg KF, Guest D. 1992. A comparative study of the rates of in vitro percutaneous absorption of eight chemicals using rat and human skin. Fundam Appl Toxicol. 19(4):493–497. doi:10.1016/0272-0590(92)90086-w.
  • Blank IH. 1965. Cutaneous barriers. J Invest Dermatol. 45(4):249–256. doi:10.1038/jid.1965.125.
  • Bookout RL, Jr, McDaniel CR, Quinn DW, McDougal JN. 1996. Multilayered dermal subcompartments for modeling chemical absorption. SAR QSAR Environ Res. 5(3):133–150. doi:10.1080/10629369608032985.
  • Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP. 1997. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health. 13(4):407–484. doi:10.1177/074823379701300401.
  • Campbell A. 2009. Development of PBPK model of molinate and molinate sulfoxide in rats and humans. Regul Toxicol Pharmacol. 53(3):195–204. doi:10.1016/j.yrtph.2009.01.003.
  • Cao J, Zhang X, Zhang Y. 2018. Predicting dermal exposure to gas-phase semivolatile organic compounds (SVOCs): a further study of SVOC mass transfer between clothing and skin surface lipids. Environ Sci Technol. 52(8):4676–4683. doi:10.1021/acs.est.7b06485.
  • Chen CP, Ahlers HW, Scott Dotson G, Lin YC, Chang WC, Maier A, Gadagbui B. 2011. Efficacy of predictive modeling as a scientific criterion in dermal hazard identification for assignment of skin notations. Regul Toxicol Pharmacol. 61(1):63–72. doi:10.1016/j.yrtph.2011.05.013.
  • Covington TR, Lumley LA, Ruark CD, Clarkson ED, Whalley CE, Gearhart JM. 2016. Modeling organophosphorus chemical warfare nerve agents: a physiologically based pharmacokinetic-pharmacodynamic (PBPK-PD) model of VX. In Worek F, Jenner J, Thiermann H, editors. Chemical warfare toxicology. Vol. 1: Fundamental aspects. Cambridge: Royal Society of Chemistry. p. 213–263.
  • Crank J. 1975. The mathematics of diffusion. 2nd ed. Oxford (UK): Clarendon Press.
  • Crinnion WJ. 2010. The CDC fourth national report on human exposure to environmental chemicals: what it tells us about our toxic burden and how it assist environmental medicine physicians. Altern Med Rev. 15(2):101–109.
  • Dancik Y, Miller MA, Jaworska J, Kasting GB. 2013. Design and performance of a spreadsheet-based model for estimating bioavailability of chemicals from dermal exposure. Adv Drug Deliv Rev. 65(2):221–236. doi:10.1016/j.addr.2012.01.006.
  • Finlayson BA. 1980. Nonlinear analysis in chemical engineering, McGraw-Hill chemical engineering series. London (UK): McGraw-Hill International Book Co.
  • Frasch H. 2012. Dermal absorption of finite doses of volatile compounds. J Pharm Sci. 101(7):2616–2619. doi:10.1002/jps.23149.
  • Frasch HF, Bunge AL. 2015. The transient dermal exposure II: post-exposure absorption and evaporation of volatile compounds. J Pharm Sci. 104(4):1499–1507. doi:10.1002/jps.24334.
  • Gearhart JM, Robinson PJ, Jakubowski EM. 2015. Chapter 58—Physiologically based pharmacokinetic modeling of chemical warfare agents. In: Gupta RC, editor. Handbook of toxicology of chemical warfare agents. 2nd ed. Boston (MA): Academic Press. p. 875–882.
  • Gong M, Zhang Y, Weschler CJ. 2014. Predicting dermal absorption of gas-phase chemicals: transient model development, evaluation, and application. Indoor Air. 24(3):292–306. doi:10.1111/ina.12079.
  • Goyal A, Mandapuram S, Michniak B, Simon L. 2007. Application of orthogonal collocation and regression techniques for recovering parameters of a two-pathway transdermal drug-delivery model. Comput Chem Eng. 31(3):107–120. doi:10.1016/j.compchemeng.2006.05.007.
  • Guyton AC. 1947. Measurement of the respiratory volumes of laboratory animals. Am J Physiol. 150(1):70–77. doi:10.1152/ajplegacy.1947.150.1.70.
  • Hays SM, Becker RA, Leung HW, Aylward LL, Pyatt DW. 2007. Biomonitoring equivalents: A screening approach for interpreting biomonitoring results from a public health risk perspective. Regul Toxicol Pharmacol. 47(1):96–109. doi:10.1016/j.yrtph.2006.08.004.
  • Izmerov NF. 1982. Toxicometric parameters of industrial toxic chemicals under single exposure, United Nations Environment Programme UNEP. Moscow (Russia): Centre of International Pojects, GKNT.
  • Jones H, Rowland-Yeo K. 2013. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacometrics Syst Pharmacol. 2(8):e63. doi:10.1038/psp.2013.41.
  • Kasting GB, Miller MA. 2006. Kinetics of finite dose absorption through skin 2: volatile compounds. J Pharm Sci. 95(2):268–280. doi:10.1002/jps.20497.
  • Keil CB, Simmons CE, Anthony TR. 2009. Mathematical models for estimating occupational exposure to chemicals. 2nd ed. Fairfax (VA): American Industrial Hygiene Association.
  • Kim KS, Simon L. 2011. Modeling and design of transdermal drug delivery patches containing an external heating device. Comput Chem Eng. 35(6):1152–1163. doi:10.1016/j.compchemeng.2011.01.006.
  • Lear K, Simon L. 2022. A method to assess dermal absorption dynamics of chemical warfare agents: finite doses of volatile compounds. J Occup Environ Hyg. 19(10-11):603–614. doi:10.1080/15459624.2022.2112684.
  • Loehle C. 2006. Global optimization using Mathematica: a test of software tools. Cary (NC): NCASI.
  • Lyons MA, Yang RS, Mayeno AN, Reisfeld B. 2008. Computational toxicology of chloroform: reverse dosimetry using Bayesian inference, Markov chain Monte Carlo simulation, and human biomonitoring data. Environ Health Perspect. 116(8):1040–1046. doi:10.1289/ehp.11079.
  • McDougal J, Jepson G, Clewell H, Andersen M. 1984. Percutaneous absorption of chemical vapors. Proceedings of the Annual Conference on Environmental Toxicology, Dayton, OH (15th). p. 314–321.
  • Merrill E, Ruark C, Gearhart JM, Robinson P. 2015. Chapter 69—Physiologically based pharmacokinetic/pharmacodynamic modeling of countermeasures to nerve agents. In: Gupta RC, editor. Handbook of toxicology of chemical warfare agents. 2nd ed. Boston (MA): Academic Press. p. 1035–1047. doi:10.1016/B978-0-12-800159-2.00069-5.
  • Merrill E, Ruark C, Gearhart JM, Robinson P. 2020. Chapter 66—Physiologically based pharmacokinetic/pharmacodynamic modeling of countermeasures to nerve agents. In: Gupta RC, editor. Handbook of toxicology of chemical warfare agents. 3rd ed. Boston (MA): Academic Press. p. 1121–1134. doi:10.1016/b978-0-12-819090-6.00066-0.
  • Meulenberg CJ, Vijverberg HP. 2000. Empirical relations predicting human and rat tissue:air partition coefficients of volatile organic compounds. Toxicol Appl Pharmacol. 165(3):206–216. doi:10.1006/taap.2000.8929.
  • Najjar A, Punt A, Wambaugh J, Paini A, Ellison C, Fragki S, Bianchi E, Zhang F, Westerhout J, Mueller D, et al. 2022. Towards best use and regulatory acceptance of generic physiologically based kinetic (PBK) models for in vitro-to-in vivo extrapolation (IVIVE) in chemical risk assessment. Arch Toxicol. 96(12):3407–3419. doi:10.1007/s00204-022-03356-5.
  • Nestorov I. 2007. Whole-body physiologically based pharmacokinetic models. Expert Opin Drug Metab Toxicol. 3(2):235–249. doi:10.1517/17425255.3.2.235.
  • Nordberg GF, Fowler BA, Nordberg M. 2015. Handbook on the toxicology of metals. 4th ed. London (UK): Academic Press.
  • Posthuma L, Suter GW, Traas TP. 2002. Species sensitivity distributions in ecotoxicology, Environmental and ecological risk assessment. Boca Raton (FL): Lewis Publishers.
  • Poulin P, Theil FP. 2000. A priori prediction of tissue:plasma partition coefficients of drugs to facilitate the use of physiologically-based pharmacokinetic models in drug discovery. J Pharm Sci. 89(1):16–35. doi:10.1002/(SICI)1520-6017(200001)89:1<16::AID-JPS3>3.0.CO;2-E.
  • Poulin P, Theil FP. 2002a. Prediction of pharmacokinetics prior to in vivo studies. 1. Mechanism-based prediction of volume of distribution. J Pharm Sci. 91(1):129–156. doi:10.1002/jps.10005.
  • Poulin P, Theil FP. 2002b. Prediction of pharmacokinetics prior to in vivo studies. II. Generic physiologically based pharmacokinetic models of drug disposition. J Pharm Sci. 91(5):1358–1370. doi:10.1002/jps.10128.
  • Roy A, Weisel CP, Lioy PJ, Georgopoulos PG. 1996. A distributed parameter physiologically-based pharmacokinetic model for dermal and inhalation exposure to volatile organic compounds. Risk Anal. 16(2):147–160. doi:10.1111/j.1539-6924.1995.tb00773.x.
  • Sweeney RE, Langenberg JP, Maxwell DM. 2006. A physiologically based pharmacokinetic (PB/PK) model for multiple exposure routes of soman in multiple species. Arch Toxicol. 80(11):719–731. doi:10.1007/s00204-006-0114-0.
  • Tan YM, Chan M, Chukwudebe A, Domoradzki J, Fisher J, Hack CE, Hinderliter P, Hirasawa K, Leonard J, Lumen A, et al. 2020. PBPK model reporting template for chemical risk assessment applications. Regul Toxicol Pharmacol. 115:104691. doi:10.1016/j.yrtph.2020.104691.
  • Tan YM, Liao KH, Clewell HJ, 3rd. 2007. Reverse dosimetry: interpreting trihalomethanes biomonitoring data using physiologically based pharmacokinetic modeling. J Expo Sci Environ Epidemiol. 17(7):591–603. doi:10.1038/sj.jes.7500540.
  • Tan YM, Liao KH, Conolly RB, Blount BC, Mason AM, Clewell HJ. 2006. Use of a physiologically based pharmacokinetic model to identify exposures consistent with human biomonitoring data for chloroform. J Toxicol Environ Health A. 69(18):1727–1756. doi:10.1080/15287390600631367.
  • Thompson CM, Johns DO, Sonawane B, Barton HA, Hattis D, Tardif R, Krishnan K. 2009. Database for physiologically based pharmacokinetic (PBPK) modeling: physiological data for healthy and health-impaired elderly. J Toxicol Environ Health B Crit Rev. 12(1):1–24. doi:10.1080/10937400802545060.
  • Tohon H, Valcke M, Aranda-Rodriguez R, Nong A, Haddad S. 2021. Estimation of toluene exposure in air from BMA (S-benzylmercapturic acid) urinary measures using a reverse dosimetry approach based on physiologically pharmacokinetic modeling. Regul Toxicol Pharmacol. 120:104860. doi:10.1016/j.yrtph.2020.104860.
  • Torkelson TR, Oyen F, Rowe VK. 1960. The toxicity of bromochloromethane (methylene chlorobromide) as determined on laboratory animals. Am Ind Hyg Assoc J. 21(4):275–286. doi:10.1080/00028896009343359.
  • U.S. EPA. 2006. Approaches for the application of physiologically based pharmacokinetic (PBPK) models and supporting data. In: Risk assessment (final report)—Appendix 3. Washington (DC): U.S. Environmental Protection Agency, EPA/600/R-05/043F.
  • van Hemmen JJ. 2004. Dermal exposure to chemicals. Ann Occup Hyg. 48(3):183–185. doi:10.1093/annhyg/meh014.
  • Wang TF, Kasting GB, Nitsche JM. 2007. A multiphase microscopic diffusion model for stratum corneum permeability. II. Estimation of physicochemical parameters, and application to a large permeability database. J Pharm Sci. 96(11):3024–3051. doi:10.1002/jps.20883.
  • Yoon H, Kim TH, Lee BC, Lee B, Kim P, Shin BS, Choi J. 2022. Comparison of the exposure assessment of di(2-ethylhexyl) phthalate between the PBPK model-based reverse dosimetry and scenario-based analysis: a Korean general population study. Chemosphere. 294:133549. doi:10.1016/j.chemosphere.2022.133549.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.