294
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Co-pyrolysis of cashew nut, coconut shells, and rice husk waste: kinetic and thermodynamic investigations

, ORCID Icon & ORCID Icon
Pages 5896-5915 | Received 24 Jan 2022, Accepted 06 Jun 2022, Published online: 30 Jun 2022
 

ABSTRACT

Co-pyrolysis of low ash content of coconut shell (CNS) and cashew nuts shells (CCS), and high ash content rice husk (RH) blends was performed using thermal gravimetric analysis (TGA). RH was blended with both CCS and CNS at 0, 30, 60, and 100% RH by mass. Results showed that CCS and CNS have low ash contents of 2.7 and 1.5%, respectively, while RH has high ash content of 26.7% on dry basis. TGA under nitrogen gas study was carried out at three heating rates of 10, 15, and 20 K/min. It was observed that the increase of CCS/CNS increased decomposition rates of blends. For example, RH increased from 6 to 7.7%/min when CNS was added. Furthermore, addition of low ash content leads to high decrease of maximum decomposition rates compared to high-high or low-low ash blends. Synergistic analysis has found out that a positive effect is observed when CNS/CCS is added to RH. The decrease of maximum decomposition temperature of 60–63°C compared to other studies of 10°C for all low and 40° for all high ashes is of great advantage. Flynn-Wall-Ozawa (FWO), Kissinger-Akahra-Sunose (KAS), and DAEM kinetic model analysis for 0.1 α 0.75 were used between 315 and 840°C. FWO model gave activation energy of 85, 70, and 75 kJ/mol, for RH, CNS, and CCS, respectively. Addition of low ash content biomass reduced activation energy of RH, activation energy of RH was reduced from 85 to 72 kJ/mol when CNS was added. RH requires high energy than the rest, example, RH needed 66.29 kJ/mol of energy compared to 51% of CNS and 56 kJ/mol for CCS. The entropy results were negative which implies a different orientation of molecules from origin samples properties. The Gibbs-free energies were positive and thus non-spontaneous process. Empirical models generated using SB model indicated that kinetics depends on reaction order and acceleration mechanism rather than diffusion and nuclei growth. Kinetically, the blending of high and low ash content biomass leads to high decrease of operating temperature and activation energy compared to low-low or high-high ash content blends. It has been recommended to further study on quality and quantity of product from such blends and the possibility of pre-treatment methods such as microwaves to improve pyrolysis of such blend.

Nomenclature

Acknowledgments

I appreciate the assistance from the University of Dodoma for sponsorship of my PhD studies at the University of Dodoma. Further acknowledgement goes to Makelele University for TGA facilities.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the UDOM PhD funding [HD/UDOM/0415/PhD/T.2018].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.