294
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Co-pyrolysis of cashew nut, coconut shells, and rice husk waste: kinetic and thermodynamic investigations

, ORCID Icon & ORCID Icon
Pages 5896-5915 | Received 24 Jan 2022, Accepted 06 Jun 2022, Published online: 30 Jun 2022

References

  • Abbasi, K. R., F. F. Adedoyin, J. Abbas, and K. Hussain. 2021. The impact of energy depletion and renewable energy on CO2 emissions in Thailand: Fresh evidence from the novel dynamic ARDL simulation. Renewable Energy 180:1439–50.
  • Ali, I., H. Bahaitham, and R. Naebulharam. 2017. A comprehensive kinetics study of coconut shell waste pyrolysis. Bioresource Technology 235:1–11.
  • Barz, M., M. K. Delivand, and K. Dinkler. 2019. Agricultural wastes–a promising source for biogas production in developing countries of the tropical and subtropical regions. Revista Forestal Mesoamericana Kurú 16 (38):2–12.
  • Bong, J. T., A. C. M. Loy, B. L. F. Chin, M. K. Lam, D. K. H. Tang, H. Y. Lim, Y. H. Chai, and S. Yusup. 2020. Artificial neural network approach for co-pyrolysis of Chlorella vulgaris and peanut shell binary mixtures using microalgae ash catalyst. Energy 207:118289.
  • Bordoloi, N., R. Narzari, R. S. Chutia, T. Bhaskar, and R. Kataki. 2015. Pyrolysis of Mesua ferrea and Pongamia glabra seed cover: Characterization of bio-oil and its sub-fractions. Bioresource Technology 178:83–89.
  • CBT. Cashewnut Production Trend Data in Tanzania. 2018 Accessed March 13, 2019. https://cashew.go.tz/production-trends.
  • Chakraborty, S., N. T. Dunford, and C. Goad. 2021. A kinetic study of microalgae, municipal sludge and cedar wood co-pyrolysis. Renewable Energy 165:514–24.
  • Chen, C., B. Qu, W. Wang, W. Wang, G. Ji, and A. Li. 2021. Rice husk and rice straw torrefaction: Properties and pyrolysis kinetics of raw and torrefied biomass. Environmental Technology & Innovation 24:101872.
  • Chong, C. T., G. R. Mong, J.-H. Ng, W. W. F. Chong, F. N. Ani, S. S. Lam, and H. C. Ong. 2019. Pyrolysis characteristics and kinetic studies of horse manure using thermogravimetric analysis. Energy Conversion and Management 180:1260–67.
  • Collazzo, G., C. Broetto, D. Perondi, J. Junges, A. Dettmer, A. Dornelles Filho, E. Foletto, and M. Godinho. 2017. A detailed non-isothermal kinetic study of elephant grass pyrolysis from different models. Applied Thermal Engineering 110:1200–11.
  • Dhyani, V., and T. Bhaskar. 2018. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renewable Energy 129:695–716.
  • Dong, H., M. Liu, X. Yan, Z. Qian, Y. Xie, W. Luo, C. Lei, and Z. Zhou. 2022. Pyrolysis gas from biomass and plastics over X-Mo@ MgO (X= Ni, Fe, Co) catalysts into functional carbon nanocomposite: Gas reforming reaction and proper process mechanisms. Science of the Total Environment 831:154751.
  • Fan, H., J. Gu, Y. Wang, H. Yuan, Y. Chen, and B. Luo. 2021. Effect of potassium on the pyrolysis of biomass components: Pyrolysis behaviors, product distribution and kinetic characteristics. Waste Management 121:255–64.
  • Fermoso, J., M. V. Gil, C. Pevida, J. Pis, and F. Rubiera. 2010. Kinetic models comparison for non-isothermal steam gasification of coal–biomass blend chars. Chemical Engineering Journal 161 (1–2):276–84.
  • Gil, M. V., D. Casal, C. Pevida, J. Pis, and F. Rubiera. 2010. Thermal behaviour and kinetics of coal/biomass blends during co-combustion. Bioresource Technology 101 (14):5601–08.
  • Heydari, M., M. Rahman, and R. Gupta. 2015. Kinetic study and thermal decomposition behavior of lignite coal. International Journal of Chemical Engineering 9. https://doi.org/10.1155/2015/481739
  • Hoang, A. T., S. Nizetic, H. C. Ong, C. T. Chong, and A. Atabani. 2021a. Acid-based lignocellulosic biomass biorefinery for bioenergy production: Advantages, application constraints, and perspectives. Journal of Environmental Management 296:113194.
  • Hoang, A. T., S. Nižetić, H. C. Ong, M. Mofijur, S. Ahmed, B. Ashok, and M. Q. Chau. 2021b. Insight into the recent advances of microwave pretreatment technologies for the conversion of lignocellulosic biomass into sustainable biofuel. Chemosphere 281:130878.
  • Hoang, A. T., H. C. Ong, I. R. Fattah, C. T. Chong, C. K. Cheng, R. Sakthivel, and Y. S. Ok. 2021c. Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. Fuel Processing Technology 223:106997.
  • Hopa, D. Y., O. Alagöz, N. Yılmaz, M. Dilek, G. Arabacı, and T. Mutlu. 2019. Biomass co-pyrolysis: Effects of blending three different biomasses on oil yield and quality. Waste Management & Research 37 (9):925–33.
  • Jain, A., and S. K. Jain. 2016. In vitro release kinetics model fitting of liposomes: An insight. Chemistry and Physics of Lipids 201:28–40.
  • Jain, A., S. Sarsaiya, M. K. Awasthi, R. Singh, R. Rajput, U. C. Mishra, J. Chen, and J. Shi. 2022. Bioenergy and bio-products from bio-waste and its associated modern circular economy: Current research trends, challenges, and future outlooks. Fuel 307:121859.
  • Jayaraman, K., M. V. Kok, and I. Gokalp. 2017. Combustion properties and kinetics of different biomass samples using TG–MS technique. Journal of Thermal Analysis and Calorimetry 127 (2):1361–70.
  • Jeevahan, J., A. Anderson, V. Sriram, R. Durairaj, G. Britto Joseph, and G. Mageshwaran. 2021. Waste into energy conversion technologies and conversion of food wastes into the potential products: A review. International Journal of Ambient Energy 42 (9):1083–101.
  • Kalair, A., N. Abas, M. S. Saleem, A. R. Kalair, and N. Khan. 2021. Role of energy storage systems in energy transition from fossil fuels to renewables. Energy Storage 3 (1):e135. doi:10.1002/est2.135.
  • Kazawadi, D., J. Ntalikwa, and G. Kombe. 2021. A review of intermediate pyrolysis as a technology of biomass conversion for coproduction of biooil and adsorption biochar. Journal of Renewable Energy 2021, 10. https://doi.org/10.1155/2021/5533780
  • Leroy, V., D. Cancellieri, E. Leoni, and J.-L. Rossi. 2010. Kinetic study of forest fuels by TGA: Model-free kinetic approach for the prediction of phenomena. Thermochimica Acta 497 (1–2):1–6.
  • Lin, X., L. Kong, H. Cai, Q. Zhang, D. Bi, and W. Yi. 2019. Effects of alkali and alkaline earth metals on the co-pyrolysis of cellulose and high density polyethylene using TGA and Py-GC/MS. Fuel Processing Technology 191:71–78.
  • Liu, H., G. Xu, and G. Li. 2021. Pyrolysis characteristic and kinetic analysis of sewage sludge using model-free and master plots methods. Process Safety and Environmental Protection 149:48–55.
  • Loy, A. C. M., S. Yusup, M. K. Lam, B. L. F. Chin, M. Shahbaz, A. Yamamoto, and M. N. Acda. 2018. The effect of industrial waste coal bottom ash as catalyst in catalytic pyrolysis of rice husk for syngas production. Energy Conversion and Management 165:541–54.
  • Lühr, C., and R. Pecenka. 2020. Development of a model for the fast analysis of polymer mixtures based on cellulose, hemicellulose (xylan), lignin using thermogravimetric analysis and application of the model to poplar wood. Fuel 277:118169.
  • Mallick, D., M. K. Poddar, P. Mahanta, and V. S. Moholkar. 2018. Discernment of synergism in pyrolysis of biomass blends using thermogravimetric analysis. Bioresource Technology 261:294–305.
  • Merdun, H., and Z. B. Laougé. 2021. Kinetic and thermodynamic analyses during co-pyrolysis of greenhouse wastes and coal by TGA. Renewable Energy 163:453–64.
  • Mierzwa-Hersztek, M., K. Gondek, M. Jewiarz, and K. Dziedzic. 2019. Assessment of energy parameters of biomass and biochars, leachability of heavy metals and phytotoxicity of their ashes. Journal of Material Cycles and Waste Management 21 (4):786–800.
  • Mochizuki, T., D. Atong, S.-Y. Chen, M. Toba, and Y. Yoshimura. 2013. Effect of SiO2 pore size on catalytic fast pyrolysis of Jatropha residues by using pyrolyzer-GC/MS. Catalysis Communications 36:1–4.
  • Mohammed, I. Y., Y. A. Abakr, S. Yusup, and F. K. Kazi. 2017. Valorization of Napier grass via intermediate pyrolysis: Optimization using response surface methodology and pyrolysis products characterization. Journal of Cleaner Production 142:1848–66.
  • Montiano, M., E. Díaz-Faes, and C. Barriocanal. 2016. Kinetics of co-pyrolysis of sawdust, coal and tar. Bioresource Technology 205:222–29.
  • Muigai, H. H., B. J. Choudhury, P. Kalita, and V. S. Moholkar. 2020. Co–pyrolysis of biomass blends: Characterization, kinetic and thermodynamic analysis. Biomass and Bioenergy 143:105839.
  • Naqvi, S. R., Z. Hameed, R. Tariq, S. A. Taqvi, I. Ali, M. B. K. Niazi, T. Noor, A. Hussain, N. Iqbal, and M. Shahbaz. 2019. Synergistic effect on co-pyrolysis of rice husk and sewage sludge by thermal behavior, kinetics, thermodynamic parameters and artificial neural network. Waste Management 85:131–40.
  • Ojha, D. K., and R. Vinu. 2020. Fast pyrolysis kinetics of lignocellulosic biomass of varying compositions. Energy Conversion and Management X:100071.
  • Okolie, J. A., E. I. Epelle, M. E. Tabat, U. Orivri, A. N. Amenaghawon, P. U. Okoye, and B. Gunes. 2021. Waste biomass valorization for the production of biofuels and value-added products: A comprehensive review of thermochemical, biological and integrated processes. Process Safety and Environmental Protection 159:323–44.
  • Phuakpunk, K., B. Chalermsinsuwan, and S. Assabumrungrat. 2020. Comparison of chemical reaction kinetic models for corn cob pyrolysis. Energy Reports 6:168–78.
  • Purnomo, D. M., F. Richter, M. Bonner, R. Vaidyanathan, and G. Rein. 2020. Role of optimisation method on kinetic inverse modelling of biomass pyrolysis at the microscale. Fuel 262:116251.
  • Rasam, S., A. M. Haghighi, K. Azizi, A. Soria-Verdugo, and M. K. Moraveji. 2020. Thermal behavior, thermodynamics and kinetics of co-pyrolysis of binary and ternary mixtures of biomass through thermogravimetric analysis. Fuel 280:118665.
  • Rasheed, T., M. T. Anwar, N. Ahmad, F. Sher, S. U.-D. Khan, A. Ahmad, R. Khan, and I. Wazeer. 2021. Valorisation and emerging perspective of biomass based waste-to-energy technologies and their socio-environmental impact: A review. Journal of Environmental Management 287:112257.
  • Reinehr, T. O., M. A. Ohara, M. P. de Oliveira Santos, J. L. M. Barros, P. R. S. Bittencourt, I. J. Baraldi, E. A. da Silva, and E. R. Zanatta. 2020. Study of pyrolysis kinetic of green corn husk. Journal of Thermal Analysis and Calorimetry 143:1–12.
  • Shao, J., R. Yan, H. Chen, H. Yang, and D. H. Lee. 2010. Catalytic effect of metal oxides on pyrolysis of sewage sludge. Fuel Processing Technology 91 (9):1113–18.
  • Shen, J., S. Zhu, X. Liu, H. Zhang, and J. Tan. 2010. The prediction of elemental composition of biomass based on proximate analysis. Energy Conversion and Management 51 (5):983–87.
  • Siddiqi, H., S. Biswas, U. Kumari, V. H. Bindu, S. Mukherjee, and B. Meikap. 2021. A comprehensive insight into devolatilization thermo-kinetics for an agricultural residue: Towards a cleaner and sustainable energy. Journal of Cleaner Production 310:127365.
  • Tsamba, A. J., W. Yang, and W. Blasiak. 2006. Pyrolysis characteristics and global kinetics of coconut and cashew nut shells. Fuel Processing Technology 87 (6):523–30.
  • Van Nguyen, Q., Y.-S. Choi, S.-K. Choi, Y.-W. Jeong, and S.-Y. Han. 2021. Co-pyrolysis of coffee-grounds and waste polystyrene foam: Synergistic effect and product characteristics analysis. Fuel 292:120375.
  • Varma, A. K., N. Lal, A. K. Rathore, R. Katiyar, L. S. Thakur, R. Shankar, and P. Mondal. 2021. Thermal, kinetic and thermodynamic study for co-pyrolysis of pine needles and styrofoam using thermogravimetric analysis. Energy 218:119404.
  • Velázquez-Martí, B., J. Gaibor-Chávez, Z. Niño-Ruiz, and E. Cortés-Rojas. 2018. Development of biomass fast proximate analysis by thermogravimetric scale. Renewable Energy 126:954–59.
  • Vhathvarothai, N., J. Ness, and Q. J. Yu. 2014. An investigation of thermal behaviour of biomass and coal during copyrolysis using thermogravimetric analysis. International Journal of Energy Research 38 (9):1145–54.
  • Wang, S., Q. Wang, Y. Hu, S. Xu, Z. He, and H. Ji. 2015. Study on the synergistic co-pyrolysis behaviors of mixed rice husk and two types of seaweed by a combined TG-FTIR technique. Journal of Analytical and Applied Pyrolysis 114:109–18.
  • Wang, Q., X. Zhang, S. Sun, Z. Wang, and D. Cui. 2020. Effect of CaO on pyrolysis products and reaction mechanisms of a corn stover. Acs Omega 5 (18):10276–87.
  • Wang, C., Y. Kong, R. Hu, and G. Zhou. 2021. Miscanthus: A fast‐growing crop for environmental remediation and biofuel production. GCB Bioenergy 13 (1):58–69.
  • Wen, Y., I. N. Zaini, S. Wang, W. Mu, P. G. Jönsson, and W. Yang. 2021. Synergistic effect of the co-pyrolysis of cardboard and polyethylene: A kinetic and thermodynamic study. Energy 229:120693.
  • Wilk, M., A. Magdziarz, M. Gajek, M. Zajemska, K. Jayaraman, and I. Gokalp. 2017. Combustion and kinetic parameters estimation of torrefied pine, acacia and Miscanthus giganteus using experimental and modelling techniques. Bioresource Technology 243:304–14.
  • Wurzer, C., and O. Mašek. 2021. Feedstock doping using iron rich waste increases the pyrolysis gas yield and adsorption performance of magnetic biochar for emerging contaminants. Bioresource Technology 321:124473.
  • Xing, J., K. Luo, H. Wang, Z. Gao, and J. Fan. 2019. A comprehensive study on estimating higher heating value of biomass from proximate and ultimate analysis with machine learning approaches. Energy 188:116077.
  • Xu, D., M. Chai, Z. Dong, M. M. Rahman, X. Yu, and J. Cai. 2018. Kinetic compensation effect in logistic distributed activation energy model for lignocellulosic biomass pyrolysis. Bioresource Technology 265:139–45.
  • Yan, J., Q. Yang, L. Zhang, Z. Lei, Z. Li, Z. Wang, S. Ren, S. Kang, and H. Shui. 2020. Investigation of kinetic and thermodynamic parameters of coal pyrolysis with model-free fitting methods. Carbon Resources Conversion 3:173–81.
  • Yap, T. L., A. C. M. Loy, B. L. F. Chin, J. Y. Lim, H. Alhamzi, Y. H. Chai, C. L. Yiin, K. W. Cheah, M. X. J. Wee, and M. K. Lam. 2022. Synergistic effects of catalytic co-pyrolysis Chlorella vulgaris and polyethylene mixtures using artificial neuron network: Thermodynamic and empirical kinetic analyses. Journal of Environmental Chemical Engineering 10 (3):107391.
  • Yuan, X., T. He, H. Cao, and Q. Yuan. 2017. Cattle manure pyrolysis process: Kinetic and thermodynamic analysis with isoconversional methods. Renewable Energy 107:489–96.
  • Zhou, L., Y. Wang, Q. Huang, and J. Cai. 2006. Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis. Fuel processing technology 87 (11):963–69.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.