486
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Polyglycidol of Linear or Branched Architecture Immobilized on a Solid Support for Biomedical Applications

, , , , &
Pages 717-767 | Received 02 Oct 2019, Accepted 08 Jan 2020, Published online: 04 Feb 2020
 

Abstract

Modern medicine has undoubtedly achieved enormous progress in applying various polymer-based materials for specific applications. Despite this, there is still a need to create systems, especially on the nano-scale, that are simultaneously nontoxic, biocompatible and able to be functionalized with active biomolecules. Polyglycidol (also called polyglycerol) is biocompatible and hydrophilic polymer, that forms different, sometimes complex, polymer architecture, possesses satisfactory stability and has a hydroxyl group on each unit capable for numerous modifications. All of these are undisputed advantages of this polymer. The potential application of this polymer and its derivatives in e.g. macromolecular therapeutics, bioconjugation with peptides, and as drug delivery systems or imaging agents has been examined and described. Nowadays, due to the possibility of using advanced synthetic methodologies, the development of new systems or devices based on polyglycidol is possible for well-defined applications. This review summarizes the results concerning the covalent immobilization of polyglycidol of linear and branched architecture on different 2 D or 3 D supports. A comprehensive overview is provided in relation to the synthetic strategy, properties of polyglycidol layers, its modification and application in reconstructive medicine or tissue engineering as antifouling surfaces, surfaces for cell engineering and imaging or for the immobilization of bioactive compounds.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.