498
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Polyglycidol of Linear or Branched Architecture Immobilized on a Solid Support for Biomedical Applications

, , , , &
Pages 717-767 | Received 02 Oct 2019, Accepted 08 Jan 2020, Published online: 04 Feb 2020

References

  • Barz, M.; Luxenhofer, R.; Zentel, R.; Vicent, M. J. Overcoming the PEG-Addiction: Well-Defined Alternatives to PEG, from Structure–Property Relationships to Better Defined Therapeutics. Polym. Chem. 2011, 2, 1900–1918.
  • Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U. S. Poly(Ethylene Glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives. Angew. Chemie Int. Ed. 2010, 49, 6288–6308.
  • Herold, D. A.; Keil, K.; Bruns, D. E. Oxidation of Polyethylene Glycols by Alcohol Dehydrogenase. Biochem. Pharmacol. 1989, 38, 73–76.
  • Smyth, H. F.; Carpenter, C. P.; Weil, C. S. The Toxicology of the Polyethylene Glycols. Journal of the American Pharmaceutical Association (Scientific ed.) 1950, 39, 349–354.
  • Dingels, C.; Schömer, M.; Frey, H. Die Vielen Gesichter Des Poly(Ethylenglykol)s. Chemie Unserer Zeit 2011, 45, 338–349. DOI: 10.1002/ciuz.201100551.
  • Han, S.; Kim, C.; Kwon, D. Thermal/Oxidative Degradation and Stabilization of Polyethylene Glycol. Polymer 1997, 38, 317–323.
  • Frey, H.; Haag, R. Dendritic Polyglycerol: A New Versatile Biocompatible Material. Rev. Mol. Biotechnol. 2002, 90, 257–267.
  • Thomas, A.; Müller, S. S.; Frey, H. Beyond Poly(Ethylene Glycol): Linear Polyglycerol as a Multifunctional Polyether for Biomedical and Pharmaceutical Applications. Biomacromolecules 2014, 15, 1935–1954.
  • Abbina, S.; Vappala, S.; Kumar, P.; Siren, E. M. J.; La, C. C.; Abbasi, U.; Brooks, D. E.; Kizhakkedathu, J. N. Hyperbranched Polyglycerols: Recent Advances in Synthesis, Biocompatibility and Biomedical Applications. J. Mater. Chem. B 2017, 5, 9249–9277.
  • Calderón, M.; Quadir, M. A.; Sharma, S. K.; Haag, R. Dendritic Polyglycerols for Biomedical Applications. Adv. Mater. Weinheim. 2010, 22, 190–218. DOI: 10.1002/adma.200902144.
  • Dworak, A.; Panchev, I.; Trzebicka, B.; Walach, W. Hydrophilic and Amphiphilic Copolymers of 2,3-Epoxypropanol-1. Macromol. Symp. 2000, 153, 233–242.
  • Walach, W.; Kowalczuk, A.; Trzebicka, B.; Dworak, A. Synthesis of High-Molar Mass Arborescent-Branched Polyglycidol via Sequential Grafting. Macromol. Rapid Commun. 2001, 22, 1272–1277.
  • Leibig, D.; Seiwert, J.; Liermann, J. C.; Frey, H. Copolymerization Kinetics of Glycidol and Ethylene Oxide, Propylene Oxide, and 1,2-Butylene Oxide: From Hyperbranched to Multiarm Star Topology. Macromolecules 2016, 49, 7767–7776.
  • Wilms, D.; Schömer, M.; Wurm, F.; Hermanns, M. I.; Kirkpatrick, C. J.; Frey, H. Hyperbranched PEG by Random Copolymerization of Ethylene Oxide and Glycidol. Macromol. Rapid Commun. 2010, 31, 1811–1815.
  • Wyszogrodzka, M.; Möws, K.; Kamlage, S.; Wodzińska, J.; Plietker, B.; Haag, R. New Approaches towards Monoamino Polyglycerol Dendrons and Dendritic Triblock Amphiphiles. Eur. J. Org. Chem. 2008, 2008, 53–63.
  • Walach, W.; Trzebicka, B.; Justynska, J.; Dworak, A. High Molecular Arborescent Polyoxyethylene with Hydroxyl Containing Shell. Polymer 2004, 45, 1755–1762.
  • Mendrek, A.; Mendrek, S.; Trzebicka, B.; Kuckling, D.; Walach, W.; Adler, H.-J.; Dworak, A. Polyether Core-Shell Cylinder–Polymerization of Polyglycidol Macromonomers. Macromol. Chem. Phys. 2005, 206, 2018–2026.
  • Huang, Y.-C.; Royappa, A. T.; Tundel, S.; Tsukamoto, K.; Sharma, V. Biocompatibility of Polyglycidol with Human Peripheral Blood Mononuclear Cells. J. Appl. Polym. Sci. 2009, 111, 2275–2278.
  • Imran Ul-Haq, M.; Lai, B. F. L.; Chapanian, R.; Kizhakkedathu, J. N. Influence of Architecture of High Molecular Weight Linear and Branched Polyglycerols on Their Biocompatibility and Biodistribution. Biomaterials 2012, 33, 9135–9147.
  • Imran Ul-Haq, M.; Lai, B. F. L.; Kizhakkedathu, J. N. Hybrid Polyglycerols with Long Blood Circulation: Synthesis, Biocompatibility, and Biodistribution. Macromol. Biosci. 2014, 14, 1469–1482.
  • Kainthan, R. K.; Hester, S. R.; Levin, E.; Devine, D. V.; Brooks, D. E. In Vitro Biological Evaluation of High Molecular Weight Hyperbranched Polyglycerols. Biomaterials 2007, 28, 4581–4590.
  • Kainthan, R. K.; Janzen, J.; Levin, E.; Devine, D. V.; Brooks, D. E. Biocompatibility Testing of Branched and Linear Polyglycidol. Biomacromolecules 2006, 7, 703–709.
  • Klajnert, B.; Walach, W.; Bryszewska, M.; Dworak, A.; Shcharbin, D. Cytotoxicity, Haematotoxicity and Genotoxicity of High Molecular Mass Arborescent Polyoxyethylene Polymers with Polyglycidol-Block-Containing Shells. Cell Biol. Int. 2006, 30, 248–252.
  • Abu Lila, A. S.; Nawata, K.; Shimizu, T.; Ishida, T.; Kiwada, H. Use of Polyglycerol (PG), instead of Polyethylene Glycol (PEG), Prevents Induction of the Accelerated Blood Clearance Phenomenon against Long-Circulating Liposomes upon Repeated Administration. Int. J. Pharm. 2013, 456, 235–242. DOI: 10.1016/j.ijpharm.2013.07.059.
  • Dworak, A.; Slomkowski, S.; Basinska, T.; Gosecka, M.; Walach, W.; Trzebicka, B. Polyglycidol - How is It Synthesized and What is It Used for? Polimery 2013, 58, 641–649. DOI: 10.14314/polimery.2013.641.
  • Gosecki, M.; Gadzinowski, M.; Gosecka, M.; Basinska, T.; Slomkowski, S. Polyglycidol, Its Derivatives, and Polyglycidol-Containing Copolymers-Synthesis and Medical Applications. Polymers 2016, 8, 227. DOI: 10.3390/polym8060227.
  • Dworak, A.; Trzebicka, B.; Utrata, A.; Walach, W. Hydrophobically Modified Polyglycidol – the Control of Lower Critical Solution Temperature. Polym. Bull. 2003, 50, 47–54. DOI: 10.1007/s00289-003-0140-5.
  • Stiriba, S.-E.; Kautz, H.; Frey, H. Hyperbranched Molecular Nanocapsules: Comparison of the Hyperbranched Architecture with the Perfect Linear Analogue. J. Am. Chem. Soc. 2002, 124, 9698–9699. DOI: 10.1021/ja026835m.
  • Erberich, M.; Keul, H.; Möller, M. Polyglycidols with Two Orthogonal Protective Groups: Preparation, Selective Deprotection, and Functionalization. Macromolecules 2007, 40, 3070–3079. DOI: 10.1021/ma0627875.
  • Hofmann, A. M.; Wipf, R.; StüHn, B.;.; Frey, H. Mesogen-Initiated Linear Polyglycerol Isomers: The Ordering Effect of a Single Cholesterol Unit on “Sticky” Isotropic Chains. Macromolecules 2011, 44, 6767–6775. DOI: 10.1021/ma201210r.
  • Weinhart, M.; Becherer, T.; Schnurbusch, N.; Schwibbert, K.; Kunte, H.-J.; Haag, R. Linear and Hyperbranched Polyglycerol Derivatives as Excellent Bioinert Glass Coating Materials. Adv. Eng. Mater. 2011, 13, B501–B510. DOI: 10.1002/adem.201180012.
  • Wurm, F.; Dingels, C.; Frey, H.; Klok, H.-A. Squaric Acid Mediated Synthesis and Biological Activity of a Library of Linear and Hyperbranched Poly(Glycerol)–Protein Conjugates. Biomacromolecules 2012, 13, 1161–1171. DOI: 10.1021/bm300103u.
  • Dimitrov, P.; Utrata-Wesołek, A.; Rangelov, S.; Wałach, W.; Trzebicka, B.; Dworak, A. Synthesis and Self-Association in Aqueous Media of Poly(Ethylene Oxide)/Poly(Ethyl Glycidyl Carbamate) Amphiphilic Block Copolymers. Polymer 2006, 47, 4905–4915. DOI: 10.1016/j.polymer.2006.05.030.
  • Ozdemir, F.; Keul, H.; Mourran, A.; Moeller, M. Polyglycidol Based Amphiphilic Double-Comb Copolymers and Their Self-Association in Aqueous Solution. Macromol. Rapid Commun. 2011, 32, 1007–1013. DOI: 10.1002/marc.201100175.
  • Häkkinen, H. The Gold–Sulfur Interface at the Nanoscale. Nat. Chem. 2012, 4, 443–455. DOI: 10.1038/nchem.1352.
  • Weinhart, M.; Grunwald, I.; Wyszogrodzka, M.; Gaetjen, L.; Hartwig, A.; Haag, R. Linear Poly(Methyl Glycerol) and Linear Polyglycerol as Potent Protein and Cell Resistant Alternatives to Poly(Ethylene Glycol). Chem. Asian J. 2010, 5, 1992–2000. DOI: 10.1002/asia.201000127.
  • Shenoi, R. A.; Chafeeva, I.; Lai, B. F. L.; Horte, S.; Kizhakkedathu, J. N. Bioreducible Hyperbranched Polyglycerols with Disulfide Linkages: Synthesis and Biocompatibility Evaluation. J. Polym. Sci. Part A: Polym. Chem. 2015, 53, 2104–2115. DOI: 10.1002/pola.27672.
  • Son, S.; Shin, E.; Kim, B.-S. Redox-Degradable Biocompatible Hyperbranched Polyglycerols: Synthesis, Copolymerization Kinetics, Degradation, and Biocompatibility. Macromolecules 2015, 48, 600–609. DOI: 10.1021/ma502242v.
  • Gervais, M.; Labbé, A.; Carlotti, S.; Deffieux, A. Direct Synthesis of α-Azido,ω-Hydroxypolyethers by Monomer-Activated Anionic Polymerization. Macromolecules 2009, 42, 2395–2400. DOI: 10.1021/ma802063s.
  • Moore, E.; Zill, A. T.; Anderson, C. A.; Jochem, A. R.; Zimmerman, S. C.; Bonder, C. S.; Kraus, T.; Thissen, H.; Voelcker, N. H. Synthesis and Conjugation of Alkyne-Functional Hyperbranched Polyglycerols. Macromol. Chem. Phys. 2016, 217, 2252–2261. DOI: 10.1002/macp.201500507.
  • Gandhi, A.; Paul, A.; Sen, S. O.; Sen, K. K. Studies on Thermoresponsive Polymers: Phase Behaviour, Drug Delivery and Biomedical Applications. Asian J. Pharm. Sci. 2015, 10, 99–107. DOI: 10.1016/j.ajps.2014.08.010.
  • Roy, D.; Brooks, W. L. A.; Sumerlin, B. S. New Directions in Thermoresponsive Polymers. Chem. Soc. Rev. 2013, 42, 7214–7243. DOI: 10.1039/c3cs35499g.
  • Utrata-Wesołek, A.; Trzebicka, B.; Dworak, A. Polimery Wrażliwe na Bodźce (I). Polimery 2008, 10, 717–724. DOI: 10.14314/polimery.2008.717.
  • Dimitrov, P.; Rangelov, S.; Dworak, A.; Haraguchi, N.; Hirao, A.; Tsvetanov, C. B. Triblock and Radial Star-Block Copolymers Comprised of Poly(Ethoxyethyl Glycidyl Ether), Polyglycidol, Poly(Propylene Oxide) and Polystyrene Obtained by Anionic Polymerization Initiated by Cs Initiators. Macromol. Symp. 2004, 215, 127–140. DOI: 10.1002/masy.200451111.
  • Heinen, S.; Rackow, S.; Cuellar-Camacho, J. L.; Donskyi, I. S.; Unger, W. E. S.; Weinhart, M. Transfer of Functional Thermoresponsive Poly(Glycidyl Ether) Coatings for Cell Sheet Fabrication from Gold to Glass Surfaces. J. Mater. Chem. B 2018, 6, 1489–1500. DOI: 10.1039/C7TB03263C.
  • Jamróz-Piegza, M.; Utrata-Wesołek, A.; Trzebicka, B.; Dworak, A. Hydrophobic Modification of High Molar Mass Polyglycidol to Thermosensitive Polymers. Eur. Polym. J. 2006, 42, 2497–2506. DOI: 10.1016/j.eurpolymj.2006.04.017.
  • Stöbener, D. D.; Hoppensack, A.; Scholz, J.; Weinhart, M. Endothelial, Smooth Muscle and Fibroblast Cell Sheet Fabrication from Self-Assembled Thermoresponsive Poly(Glycidyl Ether) Brushes. Soft Matter 2018, 14, 8333–8343. DOI: 10.1039/C8SM01099D.
  • Jamróz-Piegza, M.; Wałach, W.; Dworak, A.; Trzebicka, B. Polyether Nanoparticles from Covalently Crosslinked Copolymer Micelles. J. Colloid Interface Sci. 2008, 325, 141–148. DOI: 10.1016/j.jcis.2008.05.033.
  • Utrata-Wesołek, A.; Trzebicka, B.; Dworak, A.; Ivanova, S.; Christova, D. Thermosensitive Hydrogel of Hydrophobically Modified Polyglycidol. e-Polymers 2007, &(1), 019, DOI: 10.1515/epoly.2007.7.1.211.
  • Utrata-Wesołek, A.; Żymełka-Miara, I.; Kowalczuk, A.; Trzebicka, B.; Dworak, A. Photocrosslinking of Polyglycidol and Its Derivative: Route to Thermoresponsive Hydrogels. Photochem. Photobiol. 2018, 94, 52–60. DOI: 10.1111/php.12819.
  • Petrov, P.; Utrata-Wesołek, A.; Trzebicka, B.; Tsvetanov, C. B.; Dworak, A.; Anioł, J.; Sieroń, A. Biocompatible Cryogels of Thermosensitive Polyglycidol Derivatives with Ultra-Rapid Swelling Properties. Eur. Polym. J. 2011, 47, 981–988. DOI: 10.1016/j.eurpolymj.2011.03.010.
  • Gosecka, M.; Griffete, N.; Mangeney, C.; Chehimi, M. M.; Slomkowski, S.; Basinska, T. Preparation and Optical Properties of Novel Bioactive Photonic Crystals Obtained from Core-Shell Poly(Styrene/α-Tert-Butoxy-ω-Vinylbenzyl-Polyglycidol) Microspheres. Colloid Polym. Sci. 2011, 289, 1511–1518. DOI: 10.1007/s00396-011-2447-3.
  • Li, Z.; Chau, Y. Synthesis of Linear Polyether Polyol Derivatives as New Materials for Bioconjugation. Bioconjugate Chem. 2009, 20, 780–789. DOI: 10.1021/bc900036f.
  • Shenoi, R. A.; Kalathottukaren, M. T.; Travers, R. J.; Lai, B. F. L.; Creagh, A. L.; Lange, D.; Yu, K.; Weinhart, M.; Chew, B. H.; Du, C.; et al. Affinity-Based Design of a Synthetic Universal Reversal Agent for Heparin Anticoagulants. Sci. Transl. Med. 2014, 6, 260ra150–260ra150. DOI: 10.1126/scitranslmed.3009427.
  • Alizadeh Noghani, M.; Brooks, D. E. Progesterone Binding Nano-Carriers Based on Hydrophobically Modified Hyperbranched Polyglycerols. Nanoscale 2016, 8, 5189–5199. DOI: 10.1039/C5NR08175K.
  • Mugabe, C.; Hadaschik, B. A.; Kainthan, R. K.; Brooks, D. E.; So, A. I.; Gleave, M. E.; Burt, H. M. Paclitaxel Incorporated in Hydrophobically Derivatized Hyperbranched Polyglycerols for Intravesical Bladder Cancer Therapy. BJU Int. 2009, 103, 978–986. DOI: 10.1111/j.1464-410X.2008.08132.x.
  • Wong, N. K. Y.; Shenoi, R. A.; Abbina, S.; Chafeeva, I.; Kizhakkedathu, J. N.; Khan, M. K. Nontransformed and Cancer Cells Can Utilize Different Endocytic Pathways to Internalize Dendritic Nanoparticle Variants: Implications on Nanocarrier Design. Biomacromolecules 2017, 18, 2427–2438. DOI: 10.1021/acs.biomac.7b00590.
  • Ye, L.; Letchford, K.; Heller, M.; Liggins, R.; Guan, D.; Kizhakkedathu, J. N.; Brooks, D. E.; Jackson, J. K.; Burt, H. M. Synthesis and Characterization of Carboxylic Acid Conjugated, Hydrophobically Derivatized, Hyperbranched Polyglycerols as Nanoparticulate Drug Carriers for Cisplatin. Biomacromolecules 2011, 12, 145–155. DOI: 10.1021/bm101080p.
  • Hebishima, T.; Yuba, E.; Kono, K.; Takeshima, S.-N.; Ito, Y.; Aida, Y. The pH-Sensitive Fusogenic 3-Methyl-Glutarylated Hyperbranched Poly(Glycidol)-Conjugated Liposome Induces Antigen-Specific Cellular and Humoral Immunity. Clin. Vaccine Immunol. 2012, 19, 1492–1498. DOI: 10.1128/CVI.00273-12.
  • Hofmann, A. M.; Wurm, F.; HüHn, E.; Nawroth, T.; Langguth, P.;.; Frey, H. Hyperbranched Polyglycerol-Based Lipids via Oxyanionic Polymerization: Toward Multifunctional Stealth Liposomes. Biomacromolecules 2010, 11, 568–574. DOI: 10.1021/bm901123j.
  • Mohr, K.; Müller, S. S.; Müller, L. K.; Rusitzka, K.; Gietzen, S.; Frey, H.; Schmidt, M. Evaluation of Multifunctional Liposomes in Human Blood Serum by Light Scattering. Langmuir 2014, 30, 14954–14962. DOI: 10.1021/la502926e.
  • Yuba, E.; Harada, A.; Sakanishi, Y.; Kono, K. Carboxylated Hyperbranched Poly(Glycidol)s for Preparation of pH-Sensitive Liposomes. J. Control. Release 2011, 149, 72–80. DOI: 10.1016/j.jconrel.2010.03.001.
  • Kasza, G.; Gyulai, G.; Ábrahám, Á.; Szarka, G.; Iván, B.; Kiss, É. Amphiphilic Hyperbranched Polyglycerols in a New Role as Highly Efficient Multifunctional Surface Active Stabilizers for Poly(Lactic/Glycolic Acid) Nanoparticles. RSC Adv. 2017, 7, 4348–4352. DOI: 10.1039/C6RA27843D.
  • Li, S.; Guo, Z.; Feng, R.; Zhang, Y.; Xue, W.; Liu, Z. Hyperbranched Polyglycerol Conjugated Fluorescent Carbon Dots with Improved in Vitro Toxicity and Red Blood Cell Compatibility for Bioimaging. RSC Adv. 2017, 7, 4975–4982. DOI: 10.1039/C6RA27159F.
  • Saatchi, K.; Soema, P.; Gelder, N.; Misri, R.; McPhee, K.; Baker, J. H. E.; Reinsberg, S. A.; Brooks, D. E.; Häfeli, U. O. Hyperbranched Polyglycerols as Trimodal Imaging Agents: Design, Biocompatibility, and Tumor Uptake. Bioconjugate Chem. 2012, 23, 372–381. DOI: 10.1021/bc200280g.
  • Wang, L.; Neoh, K. G.; Kang, E. T.; Shuter, B.; Wang, S.-C. Superparamagnetic Hyperbranched Polyglycerol-Grafted Fe3O4 Nanoparticles as a Novel Magnetic Resonance Imaging Contrast Agent: An in Vitro Assessment. Adv. Funct. Mater. 2009, 19, 2615–2622. DOI: 10.1002/adfm.200801689.
  • Komatsu, N.; Zhao, L. Polyglycerol-Functionalized Nanoparticles for Biomedical Imaging. In Carbon Nanoparticles and Nanostructures; Yang, N., Jiang, X. and Pang, D.-W., Eds.; Springer International Publishing: Cham, 2016; pp 139–159.
  • Moore, E.; Thissen, H.; Voelcker, N. H. Hyperbranched Polyglycerols at the Biointerface. Prog. Surf. Sci. 2013, 88, 213–236. DOI: 10.1016/j.progsurf.2013.03.003.
  • Schüll, C.; Frey, H. Grafting of Hyperbranched Polymers: From Unusual Complex Polymer Topologies to Multivalent Surface Functionalization. Polymer 2013, 54, 5443–5455. DOI: 10.1016/j.polymer.2013.07.065.
  • Wilms, D.; Stiriba, S.-E.; Frey, H. Hyperbranched Polyglycerols: From the Controlled Synthesis of Biocompatible Polyether Polyols to Multipurpose Applications. Acc. Chem. Res. 2010, 43, 129–141. DOI: 10.1021/ar900158p.
  • Kautz, H.; Sunder, A.; Frey, H. Control of the Molecular Weight of Hyperbranched Polyglycerols. Macromol. Symp. 2001, 163, 67–74. DOI: 10.1002/1521-3900(200101)163:1<67::AID-MASY67>3.0.CO;2-D.
  • Sunder, A.; Hanselmann, R.; Frey, H.; Mülhaupt, R. Controlled Synthesis of Hyperbranched Polyglycerols by Ring-Opening Multibranching Polymerization. Macromolecules 1999, 32, 4240–4246. DOI: 10.1021/ma990090w.
  • Dworak, A.; Walach, W.; Trzebicka, B. Cationic Polymerization of Glycidol. Polymer Structure and Polymerization Mechanism. Macromol. Chem. Phys. 1995, 196, 1963–1970. DOI: 10.1002/macp.1995.021960616.
  • Sandler, S. R.; Berg, F. R. Room Temperature Polymerization of Glycidol. J. Polym. Sci. Part A-1: Polym. Chem. 1966, 4, 1253–1259. DOI: 10.1002/pol.1966.150040523.
  • Tokar, R.; Kubisa, P.; Penczek, S.; Dworak, A. Cationic Polymerization of Glycidol: Coexistence of the Activated Monomer and Active Chain End Mechanism. Macromolecules 1994, 27, 320–322. DOI: 10.1021/ma00080a002.
  • Fitton, A. O.; Hill, J.; Jane, D. E.; Millar, R. Synthesis of Simple Oxetanes Carrying Reactive 2-Substituents. Synthesis 1987, 1987, 1140–1142. DOI: 10.1055/s-1987-28203.
  • Taton, D.; Le Borgne, A.; Sepulchre, M.; Spassky, N. Synthesis of Chiral and Racemic Functional Polymers from Glycidol and Thioglycidol. Macromol. Chem. Phys. 1994, 195, 139–148. DOI: 10.1002/macp.1994.021950111.
  • Keul, H.; Möller, M. Synthesis and Degradation of Biomedical Materials Based on Linear and Star Shaped Polyglycidols. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 3209–3231. DOI: 10.1002/pola.23359.
  • Wilms, D.; Wurm, F.; Nieberle, J.; BöHm, P.; Kemmer-Jonas, U.; Frey, H. Hyperbranched Polyglycerols with Elevated Molecular Weights: A Facile Two-Step Synthesis Protocol Based on Polyglycerol Macroinitiators. Macromolecules 2009, 42, 3230–3236. DOI: 10.1021/ma802701g.
  • Kainthan, R. K.; Muliawan, E. B.; Hatzikiriakos, S. G.; Brooks, D. E. Synthesis, Characterization, and Viscoelastic Properties of High Molecular Weight Hyperbranched Polyglycerols. Macromolecules 2006, 39, 7708–7717. DOI: 10.1021/ma0613483.
  • Ul-Haq, M. I.; Shenoi, R. A.; Brooks, D. E.; Kizhakkedathu, J. N. Solvent-Assisted Anionic Ring Opening Polymerization of Glycidol: Toward Medium and High Molecular Weight Hyperbranched Polyglycerols. J. Polym. Sci. Part A: Polym. Chem. 2013, 51, 2614–2621. DOI: 10.1002/pola.26649.
  • Gheybi, H.; Sattari, S.; Bodaghi, A.; Soleimani, K.; Dadkhah, A.; Adeli, M. 5 - Polyglycerols, In Engineering of Biomaterials for Drug Delivery Systems; Parambath, A. Ed.; Woodhead Publishing, Duxford, United Kingdom, 2018 pp. 103–171.
  • Wyszogrodzka, M.; Haag, R. A Convergent Approach to Biocompatible Polyglycerol “Click” Dendrons for the Synthesis of Modular Core–Shell Architectures and Their Transport Behavior. Chem. Eur. J. 2008, 14, 9202–9214. DOI: 10.1002/chem.200800892.
  • Mangold, C.; Wurm, F.; Frey, H. Functional PEG-Based Polymers with Reactive Groups via Anionic ROP of Tailor-Made Epoxides. Polym. Chem. 2012, 3, 1714–1721. DOI: 10.1039/c2py00489e.
  • Wurm, F.; Nieberle, J.; Frey, H. Synthesis and Characterization of Poly(Glyceryl Glycerol) Block Copolymers. Macromolecules 2008, 41, 1909–1911. DOI: 10.1021/ma702458g.
  • Haouet, A.; Sepulchre, M.; Spassky, N. Preparation et Proprietes Des Poly(R)-Glycidols. Eur. Polym. J. 1983, 19, 1089–1098. DOI: 10.1016/0014-3057(83)90002-2.
  • Tsuruta, T.; Inoue, S.; Koenuma, H. Polymerization of Epoxyorganosilanes. Makromol. Chem. 1968, 112, 58–65. DOI: 10.1002/macp.1968.021120106.
  • Vandenberg, E. J. Polymerization of Glycidol and Its Derivatives: A New Rearrangement Polymerization. J. Polym. Sci. Polym. Chem. Ed. 1985, 23, 915–949. DOI: 10.1002/pol.1985.170230401.
  • Labbé, A.; Carlotti, S.; Deffieux, A.; Hirao, A. Controlled Polymerization of Glycidyl Methyl Ether Initiated by Onium Salt/Triisobutylaluminum and Investigation of the Polymer LCST. Macromol. Symp. 2007, 249-250, 392–397. DOI: 10.1002/masy.200750409.
  • Sayuri, A.; Aya, K.; Shin-Ichiro, I.; Masayoshi, W. Novel Thermosensitive Polyethers Prepared by Anionic Ring-Opening Polymerization of Glycidyl Ether Derivatives. Chem. Lett. 2002, 31, 1128–1129.
  • Becherer, T.; Heinen, S.; Wei, Q.; Haag, R.; Weinhart, M. In-Depth Analysis of Switchable Glycerol Based Polymeric Coatings for Cell Sheet Engineering. Acta Biomater. 2015, 25, 43–55. DOI: 10.1016/j.actbio.2015.06.036.
  • Heinen, S.; Cuéllar-Camacho, J. L.; Weinhart, M. Thermoresponsive Poly(Glycidyl Ether) Brushes on Gold: Surface Engineering Parameters and Their Implication for Cell Sheet Fabrication. Acta Biomater. 2017, 59, 117–128. DOI: 10.1016/j.actbio.2017.06.029.
  • Weinhart, M.; Becherer, T.; Haag, R. Switchable, Biocompatible Surfaces Based on Glycerol Copolymers. Chem. Commun. 2011, 47, 1553–1555. DOI: 10.1039/C0CC04002A.
  • Höger, K.; Becherer, T.; Qiang, W.; Haag, R.; Frieß, W.; Küchler, S. Polyglycerol Coatings of Glass Vials for Protein Resistance. Eur. J. Pharm. Biopharm. 2013, 85, 756–764. DOI: 10.1016/j.ejpb.2013.04.005.
  • Lukowiak, M. C.; Wettmarshausen, S.; Hidde, G.; Landsberger, P.; Boenke, V.; Rodenacker, K.; Braun, U.; Friedrich, J. F.; Gorbushina, A. A.; Haag, R. Polyglycerol Coated Polypropylene Surfaces for Protein and Bacteria Resistance. Polym. Chem. 2015, 6, 1350–1359.
  • Paez, J. I.; Brunetti, V.; Strumia, M. C.; Becherer, T.; Solomun, T.; Miguel, J.; Hermanns, C. F.; Calderón, M.; Haag, R. Dendritic Polyglycerolamine as a Functional Antifouling Coating of Gold Surfaces. J. Mater. Chem. 2012, 22, 19488–19497.
  • Wei, Q.; Becherer, T.; Mutihac, R.-C.; Noeske, P.-L. M.; Paulus, F.; Haag, R.; Grunwald, I. Multivalent Anchoring and Cross-Linking of Mussel-Inspired Antifouling Surface Coatings. Biomacromolecules 2014, 15, 3061–3071.
  • Wei, Q.; Becherer, T.; Noeske, P.-L. M.; Grunwald, I.; Haag, R. A Universal Approach to Crosslinked Hierarchical Polymer Multilayers as Stable and Highly Effective Antifouling Coatings. Adv. Mater. 2014, 26, 2688–2693.
  • Wyszogrodzka, M.; Haag, R. Study of Single Protein Adsorption onto Monoamino Oligoglycerol Derivatives: A Structure − Activity Relationship. Langmuir 2009, 25, 5703–5712.
  • Utrata-Wesołek, A.; Wałach, W.; Anioł, J.; Sieroń, A. L.; Dworak, A. Multiple and Terminal Grafting of Linear Polyglycidol for Surfaces of Reduced Protein Adsorption. Polymer 2016, 97, 44–54.
  • Zoppe, J. O.; Ataman, N. C.; Mocny, P.; Wang, J.; Moraes, J.; Klok, H.-A. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem. Rev. 2017, 117, 1105–1318.
  • Li, T.-F.; Xu, Y.-H.; Li, K.; Wang, C.; Liu, X.; Yue, Y.; Chen, Z.; Yuan, S.-J.; Wen, Y.; Zhang, Q.; et al. Doxorubicin-Polyglycerol-Nanodiamond Composites Stimulate Glioblastoma Cell Immunogenicity through Activation of Autophagy. Acta Biomater. 2019, 86, 381–394.
  • Zhang, N.; Steenackers, M.; Luxenhofer, R.; Jordan, R. Bottle-Brush Brushes: Cylindrical Molecular Brushes of Poly(2-Oxazoline) on Glassy Carbon. Macromolecules 2009, 42, 5345–5351.
  • Uhlmann, P.; Ionov, L.; Houbenov, N.; Nitschke, M.; Grundke, K.; Motornov, M.; Minko, S.; Stamm, M. Surface Functionalization by Smart Coatings: Stimuli-Responsive Binary Polymer Brushes. Prog. Org. Coat. 2006, 55, 168–174.
  • Khan, M.; Huck, W. T. S. Hyperbranched Polyglycidol on Si/SiO2 Surfaces via Surface-Initiated Polymerization. Macromolecules 2003, 36, 5088–5093.
  • Matrab, T.; Chehimi, M. M.; Pinson, J.; Slomkowski, S.; Basinska, T. Growth of Polymer Brushes by Atom Transfer Radical Polymerization on Glassy Carbon Modified by Electro-Grafted Initiators Based on Aryl Diazonium Salts. Surf. Interface Anal. 2006, 38, 565–568.
  • Moore, E.; Delalat, B.; Vasani, R.; McPhee, G.; Thissen, H.; Voelcker, N. H. Surface-Initiated Hyperbranched Polyglycerol as an Ultralow-Fouling Coating on Glass, Silicon, and Porous Silicon Substrates. ACS Appl. Mater. Interfaces 2014, 6, 15243–15252. DOI: 10.1021/am503570v.
  • Utrata-Wesołek, A.; Wałach, W.; Bochenek, M.; Trzebicka, B.; Anioł, J.; Sieroń, A. L.; Kubacki, J.; Dworak, A. Branched Polyglycidol and Its Derivatives Grafted-from Poly(Ethylene Terephthalate) and Silica as Surfaces That Reduce Protein Fouling. Eur. Polym. J. 2018, 105, 313–322.
  • Weber, T.; Bechthold, M.; Winkler, T.; Dauselt, J.; Terfort, A. Direct Grafting of anti-Fouling Polyglycerol Layers to Steel and Other Technically Relevant Materials. Colloids Surf. B: Biointerfaces 2013, 111, 360–366.
  • Gam-Derouich, S.; Gosecka, M.; Lepinay, S.; Turmine, M.; Carbonnier, B.; Basinska, T.; Slomkowski, S.; Millot, M.-C.; Othmane, A.; Ben Hassen-Chehimi, D.; Chehimi, M. M. Highly Hydrophilic Surfaces from Polyglycidol Grafts with Dual Antifouling and Specific Protein Recognition Properties. Langmuir 2011, 27, 9285–9294.
  • Gosecka, M.; Pietrasik, J.; Decorse, P.; Glebocki, B.; Chehimi, M. M.; Slomkowski, S.; Basinska, T. Gradient Poly(Styrene-co-Polyglycidol) Grafts via Silicon Surface-Initiated AGET ATRP. Langmuir 2015, 31, 4853–4861.
  • Bixler, G. D.; Bhushan, B. Biofouling: Lessons from Nature. Proc. R Soc. A 2012, 370, 2381–2417. DOI: 10.1098/rsta.2011.0502.
  • Francolini, I.; Vuotto, C.; Piozzi, A.; Donelli, G. Antifouling and Antimicrobial Biomaterials: An Overview. APMIS 2017, 125, 392–417.
  • Utrata-Wesołek, A. Antifouling Surfaces in Medical Application. Polimery 2013, 58, 685–695.
  • Williams, D. F. On the Mechanisms of Biocompatibility. Biomaterials 2008, 29, 2941–2953.
  • Liu, L.; Li, W.; Liu, Q. Recent Development of Antifouling Polymers: Structure, Evaluation, and Biomedical Applications in Nano/Micro-Structures. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2014, 6, 599–614. DOI: 10.1002/wnan.1278.
  • Harding, J. L.; Reynolds, M. M. Combating Medical Device Fouling. Trends Biotechnol. 2014, 32, 140–146.
  • Chen, S.; Li, L.; Zhao, C.; Zheng, J. Surface Hydration: Principles and Applications toward Low-Fouling/Nonfouling Biomaterials. Polymer 2010, 51, 5283–5293.
  • Wang, R. L. C.; Kreuzer, H. J.; Grunze, M. Molecular Conformation and Solvation of Oligo(Ethylene Glycol)-Terminated Self-Assembled Monolayers and Their Resistance to Protein Adsorption. J. Phys. Chem. B 1997, 101, 9767–9773.
  • Xue, C.-H.; Guo, X.-J.; Ma, J.-Z.; Jia, S.-T. Fabrication of Robust and Antifouling Superhydrophobic Surfaces via Surface-Initiated Atom Transfer Radical Polymerization. ACS Appl. Mater. Interfaces 2015, 7, 8251–8259. DOI: 10.1021/acsami.5b01426.
  • Utrata-Wesołek, A.; Oleszko-Torbus, N.; Bochenek, M.; Kosowski, D.; Kowalczuk, A.; Trzebicka, B.; Dworak, A. Thermoresponsive Polymer Surfaces and Their Application in Tissue Engineering. Polimery 2018, 63, 327–338.
  • Tsuda, Y.; Kikuchi, A.; Yamato, M.; Nakao, A.; Sakurai, Y.; Umezu, M.; Okano, T. The Use of Patterned Dual Thermoresponsive Surfaces for the Collective Recovery as co-Cultured Cell Sheets. Biomaterials 2005, 26, 1885–1893.
  • Nitschke, M.; Goetze, T.; Gramm, S.; Werner, C. Detachment of Human Endothelial Cell Sheets from Thermo-Responsive Poly(NiPAAm-co-DEGMA) Carriers. eXPRESS Polym. Lett. 2007, 1, 660–666.
  • Schmaljohann, D. Thermo-Responsive Polymers and Hydrogels in Tissue Engineering. e-Polymers 2005, 5, 1–17.
  • Hatakeyama, H.; Kikuchi, A.; Yamato, M.; Okano, T. Bio-Functionalized Thermoresponsive Interfaces Facilitating Cell Adhesion and Proliferation. Biomaterials 2006, 27, 5069–5078.
  • Nitschke, M.; Gramm, S.; Götze, T.; Valtink, M.; Drichel, J.; Voit, B.; Engelmann, K.; Werner, C. Thermo-Responsive Poly(NiPAAm-co-DEGMA) Substrates for Gentle Harvest of Human Corneal Endothelial Cell Sheets. J. Biomed. Mater. Res. 2007, 80A, 1003–1010.
  • Joseph, N.; R, A. K.; Kumary, T. Tunable Stimuli-Responsive Polymers for Cell Sheet Engineering, In Regenerative Medicine and Tissue Engineering – Cells and Biomaterials; Eberli, D. Ed.; InTechOpen: Rijeka, Croatia, 2011; pp. 503–512.
  • Dworak, A.; Utrata-Wesołek, A.; Szweda, D.; Kowalczuk, A.; Trzebicka, B.; Anioł, J.; Sieroń, A. L.; Klama-Baryła, A.; Kawecki, M. Poly[Tri(Ethylene Glycol) Ethyl Ether Methacrylate]-Coated Surfaces for Controlled Fibroblasts Culturing. ACS Appl. Mater. Interfaces 2013, 5, 2197–2207.
  • Kawecki, M.; Kraut, M.; Klama-Baryła, A.; Łabuś, W.; Kitala, D.; Nowak, M.; Glik, J.; Sieroń, A. L.; Utrata-Wesołek, A.; Trzebicka, B.; et al. Transfer of Fibroblast Sheets Cultured on Thermoresponsive Dishes with Membranes. J. Mater. Sci. Mater. Med. 2016, 27, 111–111. DOI: 10.1007/s10856-016-5718-1.
  • Uhlig, K.; Boysen, B.; Lankenau, A.; Jaeger, M.; Wischerhoff, E.; Lutz, J.-F.; Laschewsky, A.; Duschl, C. On the Influence of the Architecture of Poly(Ethylene Glycol)-Based Thermoresponsive Polymers on Cell Adhesion. Biomicrofluidics 2012, 6, 024129–024129.
  • Dworak, A.; Utrata-Wesołek, A.; Oleszko, N.; Wałach, W.; Trzebicka, B.; Anioł, J.; Sieroń, A. L.; Klama-Baryła, A.; Kawecki, M. Poly(2-Substituted-2-Oxazoline) Surfaces for Dermal Fibroblasts Adhesion and Detachment. J. Mater. Sci. Mater. Med. 2014, 25, 1149–1163. DOI: 10.1007/s10856-013-5135-7.
  • Oleszko, N.; Wałach, W.; Utrata-Wesołek, A.; Kowalczuk, A.; Trzebicka, B.; Klama-Baryła, A.; Hoff-Lenczewska, D.; Kawecki, M.; Lesiak, M.; Sieroń, A. L.; Dworak, A. Controlling the Crystallinity of Thermoresponsive Poly(2-Oxazoline)-Based Nanolayers to Cell Adhesion and Detachment. Biomacromolecules 2015, 16, 2805–2813.
  • Elsabahy, M.; Wooley, K. L. Design of Polymeric Nanoparticles for Biomedical Delivery Applications. Chem. Soc. Rev. 2012, 41, 2545–2561.
  • Mout, R.; Moyano, D. F.; Rana, S.; Rotello, V. M. Surface Functionalization of Nanoparticles for Nanomedicine. Chem. Soc. Rev. 2012, 41, 2539–2544.
  • Lockhart, J. N.; Spoonmore, T. J.; McCurdy, M. W.; Rogers, B. R.; Guelcher, S. A.; Harth, E. Poly(Glycidol) Coating on Ultrahigh Molecular Weight Polyethylene for Reduced Biofilm Growth. ACS Appl. Mater. Interfaces 2018, 10, 4050–4056.
  • Spears, B. R.; Waksal, J.; McQuade, C.; Lanier, L.; Harth, E. Controlled Branching of Polyglycidol and Formation of Protein–Glycidol Bioconjugates via a Graft-from Approach with “PEG-like” Arms. Chem. Commun. 2013, 49, 2394–2396.
  • Becherer, T.; Vieira Nascimento, M.; Sindram, J.; Noeske, P.-L. M.; Wei, Q.; Haag, R.; Grunwald, I. Fast and Easily Applicable Glycerol-Based Spray Coating. Prog. Org. Coat. 2015, 87, 146–154.
  • Gunkel, G.; Weinhart, M.; Becherer, T.; Haag, R.; Huck, W. T. S. Effect of Polymer Brush Architecture on Antibiofouling Properties. Biomacromolecules 2011, 12, 4169–4172.
  • Kim, J. B.; Huang, W.; Wang, C.; Bruening, M.; Baker, G. L. Bottle Brush Brushes: Ring-Opening Polymerization of Lactide from Poly(hydroxyethyl methacrylate) Surfaces, In Polymer Brushes: Synthesis, Characterization, Applications; Advincula, R. C., Brittain, W. J., Caster, K. C. and Rühe, J. Eds.; Wiley#VCH Verlag GmbH & Co. KGaA: Weinheim, 2004; pp. 105–118.
  • Utrata-Wesołek, A.; Oleszko, N.; Trzebicka, B.; Anioł, J.; Zagdańska, M.; Lesiak, M.; Sieroń, A.; Dworak, A. Modified Polyglycidol Based Nanolayers of Switchable Philicity and Their Interactions with Skin Cells. Eur. Polym. J. 2013, 49, 106–117.
  • Stöbener, D. D.; Uckert, M.; Cuellar-Camacho, J. L.; Hoppensack, A.; Weinhart, M. Ultrathin Poly(Glycidyl Ether) Coatings on Polystyrene for Temperature-Triggered Human Dermal Fibroblast Sheet Fabrication. ACS Biomater. Sci. Eng. 2017, 3, 2155–2165.
  • Stöbener, D. D.; Scholz, J.; Schedler, U.; M, Weinhart. Switchable Oligo(Glycidyl Ether) Acrylate Bottlebrushes “Grafted-from” Polystyrene Surfaces: A Versatile Strategy toward Functional Cell Culture Substrates. Biomacromolecules 2018, 19, 4207–4218.
  • Cai, T.; Yang, W. J.; Neoh, K.-G.; Kang, E.-T. Poly(Vinylidene Fluoride) Membranes with Hyperbranched Antifouling and Antibacterial Polymer Brushes. Indus. Eng. Chem. Res. 2012, 51, 15962–15973.
  • Kainthan, R. K.; Zou, Y.; Chiao, M.; Kizhakkedathu, J. N. Self-Assembled Monothiol-Terminated Hyperbranched Polyglycerols on a Gold Surface: A Comparative Study on the Structure, Morphology, and Protein Adsorption Characteristics with Linear Poly(Ethylene Glycol)s. Langmuir 2008, 24, 4907–4916.
  • Li, X.; Cai, T.; Chung, T.-S. Anti-Fouling Behavior of Hyperbranched Polyglycerol-Grafted Poly(Ether Sulfone) Hollow Fiber Membranes for Osmotic Power Generation. Environ. Sci. Technol. 2014, 48, 9898–9907. DOI: 10.1021/es5017262.
  • Neffe, A. T.; von Ruesten-Lange, M.; Braune, S.; Lützow, K.; Roch, T.; Richau, K.; Krüger, A.; Becherer, T.; Thünemann, A. F.; Jung, F.; et al. Multivalent Grafting of Hyperbranched Oligo- and Polyglycerols Shielding Rough Membranes to Mediate Hemocompatibility. J. Mater. Chem. B 2014, 2, 3626–3635.
  • Siegers, C.; Biesalski, M.; Haag, R. Self-Assembled Monolayers of Dendritic Polyglycerol Derivatives on Gold That Resist the Adsorption of Proteins. Chem. Eur. J. 2004, 10, 2831–2838.
  • Talarico, T.; Swank, A.; Privalle, C. Autoxidation of Pyridoxalated Hemoglobin Polyoxyethylene Conjugate. Biochem. Biophys. Res. Commun. 1998, 250, 354–358. DOI: 10.1006/bbrc.1998.9312.
  • Gupta, S.; Pfeil, J.; Kumar, S.; Poulsen, C.; Lauer, U.; Hamann, A.; Hoffmann, U.; Haag, R. Tolerogenic Modulation of the Immune Response by Oligoglycerol– and Polyglycerol–Peptide Conjugates. Bioconjugate Chem. 2015, 26, 669–679.
  • Henning, L. M.; Bhatia, S.; Bertazzon, M.; Marczynke, M.; Seitz, O.; Volkmer, R.; Haag, R.; Freund, C. Exploring Monovalent and Multivalent Peptides for the Inhibition of FBP21-tWW. Beilstein J. Org. Chem. 2015, 11, 701–706.
  • Kumar, P.; Shenoi, R. A.; Lai, B. F. L.; Nguyen, M.; Kizhakkedathu, J. N.; Straus, S. K. Conjugation of Aurein 2.2 to HPG Yields an Antimicrobial with Better Properties. Biomacromolecules 2015, 16, 913–923.
  • Wyszogrodzka, M.; Haag, R. Synthesis and Characterization of Glycerol Dendrons, Self-Assembled Monolayers on Gold: A Detailed Study of Their Protein Resistance. Biomacromolecules 2009, 10, 1043–1054.
  • Wei, Q.; Achazi, K.; Liebe, H.; Schulz, A.; Noeske, P.-L. M.; Grunwald, I.; Haag, R. Mussel-Inspired Dendritic Polymers as Universal Multifunctional Coatings. Angew. Chem. Int. Ed. 2014, 53, 11650–11655.
  • Wei, Q.; Krysiak, S.; Achazi, K.; Becherer, T.; Noeske, P.-L. M.; Paulus, F.; Liebe, H.; Grunwald, I.; Dernedde, J.; Hartwig, A.; et al. Multivalent Anchored and Crosslinked Hyperbranched Polyglycerol Monolayers as Antifouling Coating for Titanium Oxide Surfaces. Colloids Surf. B: Biointerfaces 2014, 122, 684–692.
  • Chapman, R. G.; Ostuni, E.; Takayama, S.; Holmlin, R. E.; Yan, L.; Whitesides, G. M. Surveying for Surfaces That Resist the Adsorption of Proteins. J. Am. Chem. Soc. 2000, 122, 8303–8304.
  • Metzke, M.; Bai, J. Z.; Guan, Z. A Novel Carbohydrate-Derived Side-Chain Polyether with Excellent Protein Resistance. J. Am. Chem. Soc. 2003, 125, 7760–7761.
  • Becherer, T.; Grunewald, C.; Engelschalt, V.; Multhaup, G.; Risse, T.; Haag, R. Polyglycerol Based Coatings to Reduce Non-Specific Protein Adsorption in Sample Vials and on SPR Sensors. Anal. Chim. Acta 2015, 867, 47–55.
  • Sigal, G. B.; Mrksich, M.; Whitesides, G. M. Effect of Surface Wettability on the Adsorption of Proteins and Detergents. J. Am. Chem. Soc. 1998, 120, 3464–3473.
  • Dey, P.; Adamovski, M.; Friebe, S.; Badalyan, A.; Mutihac, R.-C.; Paulus, F.; Leimkühler, S.; Wollenberger, U.; Haag, R. Dendritic polyglycerol-poly(ethylene glycol)-based polymer networks for biosensing application. ACS Appl. Mater. Interfaces 2014, 6, 8937–8941. DOI: 10.1021/am502018x.
  • Moore, E.; Delalat, B.; Vasani, R.; Thissen, H.; Voelcker, N. H. Patterning and Biofunctionalization of Antifouling Hyperbranched Polyglycerol Coatings. Biomacromolecules 2014, 15, 2735–2743.
  • Boulares-Pender, A.; Prager, A.; Reichelt, S.; Elsner, C.; Buchmeiser, M. R. Functionalization of Plasma-Treated Polymer Surfaces with Glycidol. J. Appl. Polym. Sci. 2011, 121, 2543–2550.
  • Xu, Y.; Gao, C.; Kong, H.; Yan, D.; Jin, Y. Z.; Watts, P. C. P. Growing Multihydroxyl Hyperbranched Polymers on the Surfaces of Carbon Nanotubes by in Situ Ring-Opening Polymerization. Macromolecules 2004, 37, 8846–8853.
  • Zhou, L.; Gao, C.; Xu, W. Efficient Grafting of Hyperbranched Polyglycerol from Hydroxyl-Functionalized Multiwalled Carbon Nanotubes by Surface-Initiated Anionic Ring-Opening Polymerization. Macromol. Chem. Phys. 2009, 210, 1011–1018.
  • Kong, H.; Gao, C.; Yan, D. Functionalization of Multiwalled Carbon Nanotubes by Atom Transfer Radical Polymerization and Defunctionalization of the Products. Macromolecules 2004, 37, 4022–4030.
  • Sun, J.-T.; Hong, C.-Y.; Pan, C.-Y. Surface Modification of Carbon Nanotubes with Dendrimers or Hyperbranched Polymers. Polym. Chem. 2011, 2, 998–1007.
  • Veiseh, O.; Gunn, J. W.; Zhang, M. Design and Fabrication of Magnetic Nanoparticles for Targeted Drug Delivery and Imaging. Adv. Drug Deliv. Rev. 2010, 62, 284–304.
  • Boudou, J.-P.; David, M.-O.; Joshi, V.; Eidi, H.; Curmi, P. A. Hyperbranched Polyglycerol Modified Fluorescent Nanodiamond for Biomedical Research. Diamond Relat. Mater. 2013, 38, 131–138.
  • Li, T.-F.; Li, K.; Zhang, Q.; Wang, C.; Yue, Y.; Chen, Z.; Yuan, S.-J.; Liu, X.; Wen, Y.; Han, M.; et al. Dendritic Cell-Mediated Delivery of Doxorubicin-Polyglycerol-Nanodiamond Composites Elicits Enhanced anti-Cancer Immune Response in Glioblastoma. Biomaterials 2018, 181, 35–52.
  • Zhao, L.; Nakae, Y.; Qin, H.; Ito, T.; Kimura, T.; Kojima, H.; Chan, L.; Komatsu, N. Polyglycerol-Functionalized Nanodiamond as a Platform for Gene Delivery: Derivatization, Characterization, and Hybridization with DNA. Beilstein J. Org. Chem. 2014, 10, 707–713.
  • Zhao, L.; Takimoto, T.; Ito, M.; Kitagawa, N.; Kimura, T.; Komatsu, N. Chromatographic Separation of Highly Soluble Diamond Nanoparticles Prepared by Polyglycerol Grafting. Angew. Chem. Int. Ed. 2011, 50, 1388–1392.
  • Zhao, L.; Xu, Y.-H.; Akasaka, T.; Abe, S.; Komatsu, N.; Watari, F.; Chen, X. Polyglycerol-Coated Nanodiamond as a Macrophage-Evading Platform for Selective Drug Delivery in Cancer Cells. Biomaterials 2014, 35, 5393–5406.
  • Zhao, L.; Xu, Y.-H.; Qin, H.; Abe, S.; Akasaka, T.; Chano, T.; Watari, F.; Kimura, T.; Komatsu, N.; Chen, X. Platinum on Nanodiamond: A Promising Prodrug Conjugated with Stealth Polyglycerol, Targeting Peptide and Acid-Responsive Antitumor Drug. Adv. Funct. Mater. 2014, 24, 5348–5357.
  • Bewersdorff, T.; Vonnemann, J.; Kanik, A.; Haag, R.; Haase, A. The Influence of Surface Charge on Serum Protein Interaction and Cellular Uptake: Studies with Dendritic Polyglycerols and Dendritic Polyglycerol-Coated Gold Nanoparticles. IJN. 2017, Volume 12, 2001–2019.
  • Papp, I.; Sieben, C.; Ludwig, K.; Roskamp, M.; Böttcher, C.; Schlecht, S.; Herrmann, A.; Haag, R. Inhibition of Influenza Virus Infection by Multivalent Sialic-Acid-Functionalized Gold Nanoparticles. Small 2010, 6, 2900–2906.
  • Vonnemann, J.; Beziere, N.; Böttcher, C.; Riese, S. B.; Kuehne, C.; Dernedde, J.; Licha, K.; von Schacky, C.; Kosanke, Y.; Kimm, M.; et al. Polyglycerolsulfate Functionalized Gold Nanorods as Optoacoustic Signal Nanoamplifiers for in Vivo Bioimaging of Rheumatoid Arthritis. Theranostics 2014, 4, 629–641.
  • Arsalani, N.; Fattahi, H.; Laurent, S.; Burtea, C.; Elst, L. V.; Muller, R. N. Polyglycerol-Grafted Superparamagnetic Iron Oxide Nanoparticles: Highly Efficient MRI Contrast Agent for Liver and Kidney Imaging and Potential Scaffold for Cellular and Molecular Imaging. Contrast Media Mol. Imaging 2012, 7, 185–194. DOI: 10.1002/cmmi.479.
  • Li, M.; Neoh, K.-G.; Wang, R.; Zong, B.-Y.; Tan, J. Y.; Kang, E.-T. Methotrexate-Conjugated and Hyperbranched Polyglycerol-Grafted Fe3O4 Magnetic Nanoparticles for Targeted Anticancer Effects. Eur. J. Pharm. Sci. 2013, 48, 111–120.
  • Nordmeyer, D.; Stumpf, P.; Gröger, D.; Hofmann, A.; Enders, S.; Riese, S. B.; Dernedde, J.; Taupitz, M.; Rauch, U.; Haag, R.; et al. Iron Oxide Nanoparticles Stabilized with Dendritic Polyglycerols as Selective MRI Contrast Agents. Nanoscale 2014, 6, 9646–9654.
  • Wang, L.; Su, D.; Jiang, L.; Feng, X. Nano-Size Effect of Hyperbranched Polyglycerol-Grafted Fe 3 O 4 Nanoparticles. Soft Mater. 2014, 12, 306–314.
  • Zhao, L.; Chano, T.; Morikawa, S.; Saito, Y.; Shiino, A.; Shimizu, S.; Maeda, T.; Irie, T.; Aonuma, S.; Okabe, H.; et al. Hyperbranched Polyglycerol-Grafted Superparamagnetic Iron Oxide Nanoparticles: Synthesis, Characterization, Functionalization, Size Separation, Magnetic Properties, and Biological Applications. Adv. Funct. Mater. 2012, 22, 5107–5117.
  • Fakhimikabir, H.; Tavakoli, M. B.; Zarrabi, A.; Amouheidari, A.; Rahgozar, S. The Role of Folic Acid-Conjugated Polyglycerol Coated Iron Oxide Nanoparticles on Radiosensitivity with Clinical Electron Beam (6 MeV) on Human Cervical Carcinoma Cell Line: In Vitro Study. J. Photochem. Photobiol. B: Biol. 2018, 182, 71–76.
  • Ghasemi, A.; Jafari, S.; Saeidi, J.; Mohtashami, M.; Salehi, I. Synthesis and Characterization of Polyglycerol Coated Superparamagnetic Iron Oxide Nanoparticles and Cytotoxicity Evaluation on Normal Human Cell Lines. Colloids Surf. A: Physicochem. Eng. Aspects 2018, 551, 128–136.
  • Jafari, T.; Simchi, A.; Khakpash, N. Synthesis and Cytotoxicity Assessment of Superparamagnetic Iron–Gold Core–Shell Nanoparticles Coated with Polyglycerol. J. Colloid Interface Sci. 2010, 345, 64–71.
  • Landarani-Isfahani, A.; Taheri-Kafrani, A.; Amini, M.; Mirkhani, V.; Moghadam, M.; Soozanipour, A.; Razmjou, A. Xylanase Immobilized on Novel Multifunctional Hyperbranched Polyglycerol-Grafted Magnetic Nanoparticles: An Efficient and Robust Biocatalyst. Langmuir 2015, 31, 9219–9227.
  • Mostaghasi, E.; Zarepour, A.; Zarrabi, A. Folic Acid Armed Fe3O4-HPG Nanoparticles as a Safe Nano Vehicle for Biomedical Theranostics. J. Taiwan Inst. Chem. Eng. 2018, 82, 33–41.
  • Wang, L.; Neoh, K. G.; Kang, E.-T.; Shuter, B. Multifunctional Polyglycerol-Grafted Fe3O4@SiO2 Nanoparticles for Targeting Ovarian Cancer Cells. Biomaterials 2011, 32, 2166–2173.
  • Wang, S.; Zhou, Y.; Yang, S.; Ding, B. Growing Hyperbranched Polyglycerols on Magnetic Nanoparticles to Resist Nonspecific Adsorption of Proteins. Colloids Surf. B: Biointerfaces 2008, 67, 122–126.
  • Das, P.; Jana, N. R. Highly Colloidally Stable Hyperbranched Polyglycerol Grafted Red Fluorescent Silicon Nanoparticle as Bioimaging Probe. ACS Appl. Mater. Interfaces 2014, 6, 4301–4309.
  • Gu, J.; Su, S.; Li, Y.; He, Q.; Zhong, J.; Shi, J. Surface Modification − Complexation Strategy for Cisplatin Loading in Mesoporous Nanoparticles. J. Phys. Chem. Lett. 2010, 1, 3446–3450.
  • Panja, P.; Das, P.; Mandal, K.; Jana, N. R. Hyperbranched Polyglycerol Grafting on the Surface of Silica-Coated Nanoparticles for High Colloidal Stability and Low Nonspecific Interaction. ACS Sustain. Chem. Eng. 2017, 5, 4879–4889.
  • Assadi, Z.; Emtiazi, G.; Zarrabi, A. Hyperbranched Polyglycerol Coated on Copper Oxide Nanoparticles as a Novel Core-Shell Nano-Carrier Hydrophilic Drug Delivery Model. J. Mol. Liq. 2018, 250, 375–380.
  • Hongmei, Q.; Maruyama, K.; Amano, T.; Murakami, T.; Komatsu, N. Hyperbranched Polyglycerol-Grafted Titanium Oxide Nanoparticles: Synthesis, Derivatization, Characterization, Size Separation, and Toxicology. Mater. Res. Exp. 2016, 3, 105049.
  • Rajh, T.; Dimitrijevic, N. M.; Bissonnette, M.; Koritarov, T.; Konda, V. Titanium Dioxide in the Service of the Biomedical Revolution. Chem. Rev. 2014, 114, 10177–10216.
  • Thomas, A.; Bauer, H.; Schilmann, A.-M.; Fischer, K.; Tremel, W.; Frey, H. The “Needle in the Haystack” Makes the Difference: Linear and Hyperbranched Polyglycerols with a Single Catechol Moiety for Metal Oxide Nanoparticle Coating. Macromolecules 2014, 47, 4557–4566.
  • Yang, X.; Zhang, C.; Li, A.; Wang, J.; Cai, X. Red Fluorescent ZnO Nanoparticle Grafted with Polyglycerol and Conjugated RGD Peptide as Drug Delivery Vehicles for Efficient Target Cancer Therapy. Mater. Sci. Eng.: C 2019, 95, 104–113.
  • Yang, X.; Zhao, L.; Zheng, L.; Xu, M.; Cai, X. Polyglycerol Grafting and RGD Peptide Conjugation on MnO Nanoclusters for Enhanced Colloidal Stability, Selective Cellular Uptake and Cytotoxicity. Colloids Surf. B: Biointerfaces 2018, 163, 167–174.
  • Cai, N.; Hou, D.; Shen, L.; Luo, X.; Xue, Y.; Yu, F. Functionalization of Graphene with Hyperbranched Polyglycerol for Stable Aqueous Dispersion. Funct. Mater. Lett. 2015, 08, 1550068.
  • Mu, S.; Li, G.; Liang, Y.; Wu, T.; Ma, D. Hyperbranched Polyglycerol-Modified Graphene Oxide as an Efficient Drug Carrier with Good Biocompatibility. Mater. Sci. Eng.: C 2017, 78, 639–646.
  • Pham, T. A.; Kumar, N. A.; Jeong, Y. T. Covalent Functionalization of Graphene Oxide with Polyglycerol and Their Use as Templates for Anchoring Magnetic Nanoparticles. Synth. Met. 2010, 160, 2028–2036.
  • Adeli, M.; Mirab, N.; Alavidjeh, M. S.; Sobhani, Z.; Atyabi, F. Carbon Nanotubes-Graft-Polyglycerol: Biocompatible Hybrid Materials for Nanomedicine. Polymer 2009, 50, 3528–3536.
  • Adeli, M.; Mirab, N.; Zabihi, F. Nanocapsules Based on Carbon Nanotubes-Graft-Polyglycerol Hybrid Materials. Nanotechnology 2009, 20, 485603.
  • Donskyi, I. S.; Achazi, K.; Wycisk, V.; Licha, K.; Adeli, M.; Haag, R. Fullerene Polyglycerol Amphiphiles as Unimolecular Transporters. Langmuir 2017, 33, 6595–6600.
  • Wang, W.; Cai, X. Polyglycerol-grafted multi-walled carbon nanotubes were prepared by one-pot method and reacted with folic acid to enhanced stability in a physiological medium. Composite Interfaces 2019, 26, 989–1000.
  • Zhou, L.; Gao, C.; Xu, W.; Wang, X.; Xu, Y. Enhanced Biocompatibility and Biostability of CdTe Quantum Dots by Facile Surface-Initiated Dendritic Polymerization. Biomacromolecules 2009, 10, 1865–1874.
  • Jeong, J. H.; Schmidt, J. J.; Kohman, R. E.; Zill, A. T.; DeVolder, R. J.; Smith, C. E.; Lai, M.-H.; Shkumatov, A.; Jensen, T. W.; Schook, L. G.; et al. Leukocyte-Mimicking Stem Cell Delivery via in Situ Coating of Cells with a Bioactive Hyperbranched Polyglycerol. J. Am. Chem. Soc. 2013, 135, 8770–8773.
  • Kumar, S.; Chatterjee, K. Comprehensive Review on the Use of Graphene-Based Substrates for Regenerative Medicine and Biomedical Devices. ACS Appl. Mater. Interfaces 2016, 8, 26431–26457.
  • Kyeremateng, N. A.; Brousse, T.; Pech, D. Microsupercapacitors as Miniaturized Energy-Storage Components for on-Chip Electronics. Nat. Nanotechnol. 2017, 12, 7–15.
  • Szunerits, S.; Boukherroub, R. Antibacterial Activity of Graphene-Based Materials. J. Mater. Chem. B 2016, 4, 6892–6912.
  • Chen, Q.; Wen, J.; Li, H.; Xu, Y.; Liu, F.; Sun, S. Recent Advances in Different Modal Imaging-Guided Photothermal Therapy. Biomaterials 2016, 106, 144–166.
  • Pattnaik, S.; Swain, K.; Lin, Z. Graphene and Graphene-Based Nanocomposites: Biomedical Applications and Biosafety. J. Mater. Chem. B 2016, 4, 7813–7831.
  • Yousefi, M.; Dadashpour, M.; Hejazi, M.; Hasanzadeh, M.; Behnam, B.; de la Guardia, M.; Shadjou, N.; Mokhtarzadeh, A. Anti-Bacterial Activity of Graphene Oxide as a New Weapon Nanomaterial to Combat Multidrug-Resistance Bacteria. Mater. Sci. Eng.: C 2017, 74, 568–581.
  • Ferraro, M.; Silberreis, K.; Mohammadifar, E.; Neumann, F.; Dernedde, J.; Haag, R. Biodegradable Polyglycerol Sulfates Exhibit Promising Features for anti-Inflammatory Applications. Biomacromolecules 2018, 19, 4524–4533.
  • Shenoi, R. A.; Lai, B. F. L.; Imran Ul-Haq, M.; Brooks, D. E.; Kizhakkedathu, J. N. Biodegradable Polyglycerols with Randomly Distributed Ketal Groups as Multi-Functional Drug Delivery Systems. Biomaterials 2013, 34, 6068–6081.
  • Tonhauser, C.; Schüll, C.; Dingels, C.; Frey, H. Branched Acid-Degradable, Biocompatible Polyether Copolymers via Anionic Ring-Opening Polymerization Using an Epoxide Inimer. ACS Macro Lett. 2012, 1, 1094–1097.
  • Pranantyo, D.; Xu, L. Q.; Neoh, K. G.; Kang, E.-T.; Teo, S. L.-M. Antifouling Coatings via Tethering of Hyperbranched Polyglycerols on Biomimetic Anchors. Indus. Eng. Chem. Res. 2016, 55, 1890–1901.
  • Dernedde, J.; Rausch, A.; Weinhart, M.; Enders, S.; Tauber, R.; Licha, K.; Schirner, M.; Zügel, U.; von Bonin, A.; Haag, R. Dendritic Polyglycerol Sulfates as Multivalent Inhibitors of Inflammation. Proc. Natl. Acad. Sci. USA 2010, 107, 19679–19684.
  • Stöbener, D. D.; Paulus, F.; Welle, A.; Wöll, C.; Haag, R. Dynamic Protein Adsorption onto Dendritic Polyglycerol Sulfate Self-Assembled Monolayers. Langmuir 2018, 34, 10302–10308.
  • Yu, Y.; Frey, H. Controllable Nonspecific Protein Adsorption by Charged Hyperbranched Polyglycerol Thin Films. Langmuir 2015, 31, 13101–13106.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.