Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 17, 2021 - Issue 9
472
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Rapid post-earthquake damage assessment of ageing reinforced concrete bridge piers using time-frequency analysis

ORCID Icon, & ORCID Icon
Pages 1228-1244 | Received 28 Jan 2020, Accepted 21 May 2020, Published online: 13 Aug 2020
 

Abstract

The role of signal-based nonlinear system identification methods for the rapid post-earthquake damage assessment of reinforced concrete (RC) bridge piers is explored. Experimental data from the shaking table tests of six RC columns with and without corrosion damage are used as benchmark data. The specimens are excited under three different ground motions with different time-series characteristics, structural detailing, and corrosion levels. The proposed system identification methods make use of accelerations alone (but not displacements as these are costly in-situ) to estimate the instantaneous frequency. The Wigner-Ville distribution and Hilbert transform are utilised due to their high resolution in both time and frequency domains. A combination of modal filtering and thresholding, using instantaneous amplitudes, is employed to attenuate the unreliable spikes in the Hilbert transform’s instantaneous frequency estimates. Their performance is benchmarked against a moving linear regression and standard white-noise tests. The comparison of the experimental results and time-frequency analysis indicates that the Wigner-Ville distribution and the Hilbert transform can produce reliable rapid damage detection when the response amplitude is large. The Wigner-Ville distribution has better robustness and higher resolution. The robustness of the more computationally efficient Hilbert transform can be significantly improved by the introduction of modal filtering and thresholding.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.