Publication Cover
Structure and Infrastructure Engineering
Maintenance, Management, Life-Cycle Design and Performance
Volume 17, 2021 - Issue 9
472
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Rapid post-earthquake damage assessment of ageing reinforced concrete bridge piers using time-frequency analysis

ORCID Icon, & ORCID Icon
Pages 1228-1244 | Received 28 Jan 2020, Accepted 21 May 2020, Published online: 13 Aug 2020

References

  • Adeli, H., & Jiang, X. (2006). Dynamic fuzzy wavelet neural network model for structural system identification. Journal of Structural Engineering, 132(1), 102–111. doi:10.1061/(ASCE)0733-9445(2006)132:1(102)
  • Ahlborn, T. M., Shuchman, R., Sutter, L. L., Brooks, C. N., Harris, D. K., Burns, J. W., … Oats, R. C. (2010). The state-of-the-practice of modern structural health monitoring for bridges: A comprehensive review. Technical Report. Ann Arbour, MI: Michigan Technological University.
  • Alexander, N. A., Chanerley, A. A., Crewe, A. J., & Bhattacharya, S. (2014). Obtaining spectrum matching time series using a reweighted Volterra series algorithm (RVSA). Bulletin of the Seismological Society of America, 104(4), 1663–1673. doi:10.1785/0120130198
  • Alipour, A., Shafei, B., & Shinozuka, M. (2011). Performance evaluation of deteriorating highway bridges located in high seismic areas. Journal of Bridge Engineering, 16(5), 597–611. doi:10.1061/(ASCE)BE.1943-5592.0000197
  • Ancheta, T. D., Darragh, R. B., Stewart, J. P., Seyhan, E., Silva, W. J., Chiou, B. S. J., … Donahue, J. L. (2014). NGA-West2 database. Earthquake Spectra 30.3 (2014), 989–1005.
  • Auger, F., Flandrin, P., Gonçalvès, P., & Lemoine, O. (1996). Time-frequency toolbox – for use with MATLAB.
  • Berinde, F. C., Gillich, G. R., & Chioncel, C. P. (2006). Structure monitoring and evaluation using vibro-acoustic method supported by the Wigner-Ville distribution. Romanian Journal of Acoustics and Vibration, 7, 61–65.
  • Bradford, S. C., Yang, J., & Heaton, T. H. (2006). Variations in the dynamic properties of structures: the Wigner-Ville distribution. The 8th U.S. National Conference on Earthquake Engineering, No. (1439).
  • Caltrans (2013). Seismic design criteria, Version 1.7. California Department of Transportation.
  • CEN.EN. (2010). Eurocode 8 – Design provisions for earthquake resistance of structures – Part 2: Bridges.
  • Chang, G. A., & Mander, J. B. (1994). Seismic energy based fatigue damage analysis of bridge columns: part I – evaluation of seismic capacity (p. 222). Buffalo, NY: National Center for Earthquake Engineering Research.
  • Chen, G., Chen, J., & Dong, G. (2013). Chirplet Wigner–Ville distribution for time–frequency representation and its application. Mechanical Systems and Signal Processing, 41(1-2), 1–13. doi:10.1016/j.ymssp.2013.08.010
  • Chen, Y., & Feng, M. Q. (2003). A technique to improve the empirical mode decomposition in the Hilbert-Huang transform. Earthquake Engineering and Engineering Vibration, 2(1), 75–85. doi:10.1007/BF02857540
  • Choe, D. E., Gardoni, P., Rosowsky, D., & Haukaas, T. (2008). Probabilistic capacity models and seismic fragility estimates for RC columns subject to corrosion. Reliability Engineering & System Safety, 93(3), 383–393. doi:10.1016/j.ress.2006.12.015
  • Claasen, T. A. C. M., & Mecklenbräuker, W. F. G. (1980). The Wigner distribution-a tool for time-frequency signal analysis Part I: Continuous-time signals. Philips Journal of Research, 35(3), 217–250.
  • Cruz, P. J. S., & Salgado, R. (2009). Performance of vibration-based damage detection methods in bridges. Computer-Aided Civil and Infrastructure Engineering, 24(1), 62–79. doi:10.1111/j.1467-8667.2008.00546.x
  • Cusson, D., & Paultre, P. (1994). High‐strength concrete columns confined by rectangular ties. Journal of Structural Engineering, 120(3), 783–804. doi:10.1061/(ASCE)0733-9445(1994)120:3(783)
  • Dätig, M., & Schlurmann, T. (2004). Performance and limitations of the Hilbert–Huang transformation (HHT) with an application to irregular water waves. Ocean Engineering, 31(14-15), 1783–1834. doi:10.1016/j.oceaneng.2004.03.007
  • Dhakal, R. P., & Maekawa, K. (2002). Reinforcement stability and fracture of cover concrete in reinforced concrete members. Journal of Structural Engineering, 128(10), 1253–1262. doi:10.1061/(ASCE)0733-9445(2002)128:10(1253)
  • Dizaj, E. A., Madandoust, R., & Kashani, M. M. (2018a). Probabilistic seismic vulnerability analysis of corroded reinforced concrete frames including spatial variability of pitting corrosion. Soil Dynamics and Earthquake Engineering, 114, 97–112. doi:10.1016/j.soildyn.2018.07.013
  • Dizaj, E. A., Madandoust, R., & Kashani, M. M. (2018b). Exploring the impact of chloride-induced corrosion on seismic damage limit states and residual capacity of reinforced concrete structures. Structure and Infrastructure Engineering, 14(6), 714–729. doi:10.1080/15732479.2017.1359631
  • El Shafie, A., Noureldin, A., McGaughey, D., & Hussain, A. (2012). Fast orthogonal search (FOS) versus fast Fourier transform (FFT) as spectral model estimations techniques applied for structural health monitoring (SHM). Structural and Multidisciplinary Optimization, 45(4), 503–513. doi:10.1007/s00158-011-0695-y
  • El-Bahy, A., Kunnath, S. K., Stone, W. C., & Taylor, A. W. (1999). Cumulative seismic damage of circular bridge columns: benchmark and low-cycle fatigue tests. ACI Structural Journal, 96(4), 633–641.
  • Feldman, M. (2014). Hilbert transform methods for nonparametric identification of nonlinear time varying vibration systems. Mechanical Systems and Signal Processing, 47(1-2), 66–77. doi:10.1016/j.ymssp.2012.09.003
  • FEMA-P695 (2009). Quantification of building seismic performance factors. Washington: Federal Emergency Management Agency.
  • Foster, S. J. (2001). On behaviour of high-strength concrete columns: Cover spalling, steel fibres, and ductility. ACI Structural Journal, 98(4), 583–589. doi:10.14359/10301.
  • Gaal, G. C. M. (2004). Prediction of deterioration of concrete bridges. PhD Thesis, Delft University, ISBN 90-407-2500-4.
  • Ge, X., Dietz, M. S., Alexander, N. A., & Kashani, M. M. (2020). Nonlinear dynamic behaviour of severely corroded reinforced concrete columns: Shaking table study. Bulletin of Earthquake Engineering, 18(4), 1417–1427. doi:10.1007/s10518-019-00749-3
  • Ghosh, J., & Padgett, J. E. (2010). Aging considerations in the development of time-dependent seismic fragility curves. Journal of Structural Engineering, 136(12), 1497–1511. doi:10.1061/(ASCE)ST.1943-541X.0000260
  • Giurgiutiu, V., & Yu, L. (2003). Comparison of short-time Fourier transform and wavelet transform of transient and tone burst wave propagation signals for structural health monitoring. 4th International Workshop on Structural Health Monitoring.
  • Guo, Y. L., & Kareem, A. (2016a). Non-stationary frequency domain system identification using time–frequency representations. Mechanical Systems and Signal Processing, 72-73, 712–726. doi:10.1016/j.ymssp.2015.10.031
  • Guo, Y. L., & Kareem, A. (2016b). System identification through nonstationary data using time–frequency blind source separation. Journal of Sound and Vibration, 371, 110–131. doi:10.1016/j.jsv.2016.02.011
  • Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., … Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971), 903–995. doi:10.1098/rspa.1998.0193
  • Iatsenko, D., McClintock, P. V. E., & Stefanovska, A. (2016). Extraction of instantaneous frequencies from ridges in time–frequency representations of signals. Signal Processing, 125, 290–303. doi:10.1016/j.sigpro.2016.01.024
  • Kashani, M. M., Crewe, A. J., & Alexander, N. A. (2017). Structural capacity assessment of corroded RC bridge piers. Proceedings of the Institution of Civil Engineers - Bridge Engineering, 170(1), 28–41. doi:10.1680/jbren.15.00023
  • Kashani, M. M., Ge, X., Dietz, M. S., Crewe, A. J., & Alexander, N. A. (2019). Significance of non‐stationary characteristics of ground‐motion on structural damage: shaking table study. Bulletin of Earthquake Engineering, 17(9), 4885–4823. doi:10.1007/s10518-019-00668-3
  • Kashani, M. M., Maddocks, J., & Dizaj, E. A. (2019). Residual capacity of corroded reinforced concrete bridge components: State-of-the-art review. Journal of Bridge Engineering, 24(7), 03119001. doi:10.1061/(ASCE)BE.1943-5592.0001429
  • Kashani, M. M., Málaga-Chuquitaype, C., Yang, S., & Alexander, N. A. (2017). Influence of non-stationary content of ground-motions on nonlinear dynamic response of RC bridge piers. Bulletin of Earthquake Engineering, 15(9), 3897–3918. doi:10.1007/s10518-017-0116-8
  • Kashani, M. M., Salami, M. R., Goda, K., & Alexander, N. A. (2018). Non-linear flexural behaviour of RC columns including bar buckling and fatigue degradation. Magazine of Concrete Research, 70(5), 231–247. doi:10.1680/jmacr.16.00495
  • Khoa, N. V. (2013). Monitoring a sudden crack of beam-like bridge during earthquake excitation. Vietnam Journal of Mechanics, 35(3), 189–202. doi:10.15625/0866-7136/35/3/2561
  • Kijewski-Correa, T. (2005). GPS: A new tool for structural displacement measurements. APT Bulletin, 36(1), 13–18.
  • Kim, T. H., Lee, K. M., Chung, Y. S., & Shin, H. M. (2005). Seismic damage assessment of reinforced concrete bridge columns. Engineering Structures, 27(4), 576–592. doi:10.1016/j.engstruct.2004.11.016
  • Kunwar, A., Jha, R., Whelan, M., & Janoyan, K. (2013). Damage detection in an experimental bridge model using Hilbert-Huang transform of transient vibrations. Structural Control and Health Monitoring, 20(1), 1–15. doi:10.1002/stc.466
  • Lehman, D., Moehle, J., Mahin, S., Calderone, A., & Henry, L. (2004). Experimental evaluation of the seismic performance of reinforced concrete bridge columns. Journal of Structural Engineering, 130(6), 869–879. doi:10.1061/(ASCE)0733-9445(2004)130:6(869)
  • Li, Z., Park, H. S., & Adeli, H. (2017). New method for modal identification of super high‐rise building structures using Discretised synchrosqueezed wavelet and Hilbert transforms. The Structural Design of Tall and Special Buildings, 26(3), e1312. doi:10.1002/tal.1312
  • Loutridis, S. J. (2004). Damage detection in gear systems using empirical mode decomposition. Engineering Structures, 26(12), 1833–1841. doi:10.1016/j.engstruct.2004.07.007
  • Martin, W., & Flandrin, P. (1985). Detection of changes of signal structure by using the Wigner-Ville spectrum. Signal Processing, 8(2), 215–233. doi:10.1016/0165-1684(85)90075-1
  • Matheney, M. P., & Nowack, R. L. (1995). Seismic attenuation values obtained from instantaneous-frequency matching and spectral ratios. Geophysical Journal International, 123(1), 1–15. doi:10.1111/j.1365-246X.1995.tb06658.x
  • Melhem, H., & Kim, H. S. (2003). Damage detection in concrete by Fourier and wavelet analyses. Journal of Engineering Mechanics, 129(5), 571–577. doi:10.1061/(ASCE)0733-9399(2003)129:5(571)
  • Nagarajaiah, S., & Basu, B. (2009). Output only modal identification and structural damage detection using time frequency and wavelet techniques. Earthquake Engineering and Engineering Vibration, 8(4), 583–605. doi:10.1007/s11803-009-9120-6
  • Pines, D., & Salvino, L. (2006). Structural health monitoring using empirical mode decomposition and the Hilbert phase. Journal of Sound and Vibration, 294(1-2), 97–124. doi:10.1016/j.jsv.2005.10.024
  • Qiao, L., Esmaeily, A., & Melhem, H. G. (2012). Signal pattern recognition for damage diagnosis in structures. Computer-Aided Civil and Infrastructure Engineering, 27(9), 699–710. doi:10.1111/j.1467-8667.2012.00766.x
  • Roy, T. B., Banerji, S., Panigrahi, S. K., Chourasia, A., Tirca, L., & Bagchi, A. (2019). A novel method for vibration-based damage detection in structures using marginal Hilbert spectrum. In A. Rao & K. Ramanjaneyulu (Eds.), Recent advances in structural engineering (pp. 1161–1172). Singapore: Springer. doi:10.1007/978-981-13-0362-3_92.
  • Salvino, L. W., Pines, D. J., Todd, M. D., & Nichols, J. (2003). Signal processing and damage detection in a frame structure excited by chaotic input force. In R. C. Smith (Ed.), SPIE 5049, Smart Structures and materials 2003: Modelling, signal processing, and control (Vol. 5049, p. 639). San Diego, California: International Society for Optics and Photonics. doi:10.1117/12.484012
  • Sheikh, S. A., & Khoury, S. S. (1993). Confined concrete columns with stubs. ACI Structural Journal, 90(4), 414–431.
  • Shin, M., & Andrawes, B. (2011). Emergency repair of severely damaged reinforced concrete columns using active confinement with shape memory alloys. Smart Materials and Structures, 20(6), 065018. doi:10.1088/0964-1726/20/6/065018
  • Si, L., Wang, Q., Si, L., & Wang, Q. (2016). Rapid multi-damage identification for health monitoring of laminated composites using piezoelectric wafer sensor arrays. Sensors, 16(5), 638. doi:10.3390/s16050638
  • Spanos, P. D., & Failla, G. (2005). Wavelets: Theoretical concepts and vibrations related applications. The Shock and Vibration Digest, 37(5), 359–376. doi:10.1177/0583102405055441
  • Spanos, P. D., Giaralis, A., Politis, N. P., & Roesset, J. M. (2007). Numerical treatment of seismic accelerograms and of inelastic seismic structural responses using harmonic Wavelets. Computer-Aided Civil and Infrastructure Engineering, 22(4), 254–264. doi:10.1111/j.1467-8667.2007.00483.x
  • Staszewski, W. J., & Robertson, A. N. (2007). Time-frequency and time-scale analyses for structural health monitoring. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 365(1851), 449–477. doi:10.1098/rsta.2006.1936
  • Tang, B. P., Liu, W. Y., & Song, T. (2010). Wind turbine fault diagnosis based on Morlet wavelet transformation and Wigner–Ville distribution. Renewable Energy., 35(12), 2862–2866. doi:10.1016/j.renene.2010.05.012
  • The MathWorks Inc (2019). MATLAB (9.6.0.1011450 (R2019a) Prerelease). Natick, Massachusetts: The MathWorks Inc.
  • Thomson, E., Bendito, A., & Flórez-López, J. (1998). Simplified model of low cycle fatigue for RC frames. Journal of Structural Engineering, 124(9), 1082–1085. doi:10.1061/(ASCE)0733-9445(1998)124:9(1082)
  • Tobbi, H., Farghaly, A. S., & Benmokrane, B. (2014). Behaviour of concentrically loaded fiber-reinforced polymer reinforced concrete columns with varying reinforcement types and ratios. ACI Structural Journal, 111(4), 375–386. doi:10.14359/51686630
  • Ville, J. (1948). Theorie et applications de la notion de signal analytique. Cables et Transmission, 1, 61–74.
  • Vold, H., Crowley, J., & Rocklin, G. T. (1984). New Ways of Estimating Frequency Response Functions. Sound & Vibration, 18(11), 34–38.
  • Wigner, E. (1932). On the quantum correction for thermodynamic equilibrium. Physical Review, 40(5), 749–759. doi:10.1103/PhysRev.40.749
  • Wong, L. A., & Chen, J. C. (2001). Nonlinear and chaotic behaviour of structural system investigated by wavelet transform techniques. International Journal of Non-Linear Mechanics, 36(2), 221–235. doi:10.1016/S0020-7462(00)00007-X
  • Wu, J. D., & Chiang, P. H. (2009). Application of Wigner–Ville distribution and probability neural network for scooter engine fault diagnosis. Expert Systems with Applications, 36(2), 2187–2199. doi:10.1016/j.eswa.2007.12.012
  • Youssef, M. A., & Ghobarah, A. (1999). Strength deterioration due to bond slip and concrete crushing in modelling of reinforced concrete members. ACI Structural Journal, 96(6), 956–966. doi:10.14359/770.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.