386
Views
4
CrossRef citations to date
0
Altmetric
Articles

A numerical scheme based on discrete mollification method using Bernstein basis polynomials for solving the inverse one-dimensional Stefan problem

, &
Pages 1528-1550 | Received 03 Sep 2019, Accepted 09 Feb 2020, Published online: 09 Mar 2020
 

ABSTRACT

This paper concerns a one-phase inverse Stefan problem in one-dimensional space. The problem is ill-posed in the sense that the solution does not depend continuously on the data. We also consider noisy data for this problem. As such, we first regularize the proposed problem by the discrete mollification method. We apply the integration matrix using Bernstein basis polynomials for the discrete mollification method. Through this method, the execution time was gradually decreased. We then extend the space marching algorithm for solving our problem. Moreover, proofs of stability and convergence of the process are given. Finally, the results of this paper have been illustrated and examined by some numerical examples. Numerical examples confirm the efficiency of the proposed method.

2010 Mathematics Subject Classifications:

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.