386
Views
4
CrossRef citations to date
0
Altmetric
Articles

A numerical scheme based on discrete mollification method using Bernstein basis polynomials for solving the inverse one-dimensional Stefan problem

, &
Pages 1528-1550 | Received 03 Sep 2019, Accepted 09 Feb 2020, Published online: 09 Mar 2020

References

  • Bakal A, Timbers G, Hayakawa K. Solution of the characteristic equation involved in the transient heat conduction for foods approximated by an infinite slab. Can Inst Food Technol. 1970;3:76–77. doi: 10.1016/S0008-3860(70)74275-X
  • Conti M. Density change effects on crystal growth from the melt. Phys Rev. 2001;E64:051601.
  • Libbrecht KG. The physics of snow crystals. Rep Prog Phys. 2005;68:855–895. doi: 10.1088/0034-4885/68/4/R03
  • Lin WS. Steady ablation on the surface of a two-layer composite. Int J Heat Mass Transf. 2005;48:5504–5519. doi: 10.1016/j.ijheatmasstransfer.2005.06.040
  • Sharifi N, Bergman TL, Allen MJ, et al. Melting and solidification enhancement using a combined heat pipe foil approach. Int J Heat Mas Tran. 2015;78:930–941. doi: 10.1016/j.ijheatmasstransfer.2014.07.054
  • Tayler AB. Mathematical models in applied mechanics. Oxford: ClarendonPress; 2001.
  • Namenanee K, McKenzie J, Kosa E, et al. A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. J Am College Cardiol. 2004;43(11):2044–2053. doi: 10.1016/j.jacc.2003.12.054
  • Salva NN, Tarzia DA. Explicit solution for a Stefan problem with variable latent heat and constant heat flux boundary conditions. J Math Anal Appl. 2011;379:240–244. doi: 10.1016/j.jmaa.2010.12.039
  • Trueba JL, Voller VR. Analytical and numerical solution of a generalized Stefan problem exhibiting two moving boundaries with application to ocean delta formation. J Math Anal Appl. 2010;366:538–549. doi: 10.1016/j.jmaa.2010.01.008
  • Gupta SC. The classical Stefan problem, basic concepts, modelling and analysis. Amsterdam: Elsevier; 2003.
  • Crank J. Free and moving boundary problems. Oxford: Clarendon Press; 1984.
  • Finlayson BA. The method of weighted residuals and variational principles. New York: Academic Press; 1972.
  • Meirmanov AM. The Stefan problem. Berlin: Walter de Gruyter; 1992.
  • Ozisik MN. Heat conduction. New York: Wiley; 1980.
  • Rubinstein LI. The Stefan problem. Providence: AMS; 1971.
  • Goldman NL. Inverse Stefan problem. Dordrecht: Kluwer; 1997.
  • Slota D. Direct and inverse one-phase Stefan problem solved by the variational iteration method. Comput Math Appl. 2007;54:113–1146. doi: 10.1016/j.camwa.2006.12.061
  • Johansson BT, Lesnic D, Reeve T. A method of fundamental solutions for the one-dimensional inverse Stefan problem. Appl Math Model. 2011;35:4367–4378. doi: 10.1016/j.apm.2011.03.005
  • Mitchell SL, Vynnycky M. Finite-difference methods with increased accuracy and correct initialization for one-dimensional Stefan problems. Appl Math Comput. 2009;215:1609–1621.
  • Wrobel LC. A boundary element solution to Stefan's problem. Southampton: Computational Mechanics Publications and Berlin: Springer-Verlag; 1983. p. 173–182. (Boundary Elements; V).
  • Bollati J, Semitiel J, Tarzia DA. Heat balance integral methods applied to the one-phase Stefan problem with a convective boundary condition at the fixed face. Appl Math Comput. 2018;331:1–19. doi: 10.1016/j.cam.2017.09.008
  • Acosta CD, Mejia CE. Stabilization of explicit methods for convection diffusion equations by discrete mollification. Comput Math Appl. 2008;55:368–380. doi: 10.1016/j.camwa.2007.04.019
  • Mejia CE, Murio DA. Mollified hyperbolic method for coefficient identification problems. Comput Math Appl. 1993;26(5):1–12. doi: 10.1016/0898-1221(93)90067-6
  • Mejia CE, Acosta CD, Saleme KI. Numerical identification of a nonlinear diffusion coefficient by discrete mollification. Comput Math Appl. 2001;62:2187–2199. doi: 10.1016/j.camwa.2011.07.004
  • Murio DA. Mollification and space marching, In: Woodbury, K ed. Inverse Engineering Handbook, CRC Press;2002.
  • Reddy GMM, Vynnycky M, Cuminato JA. On efficient reconstruction of boundary data with optimal placement of the source points in the MFS: application to inverse Stefan problems. Inverse Probl. Sci. Eng. 2018;26:1249–1279. doi: 10.1080/17415977.2017.1391244
  • Reddy GMM, Vynnycky M, Cuminato JA. An efficient adaptive boundary algorithm to reconstruct Neumann boundary data in the MFS for the inverse Stefan problem. J Comput Appl Math. 2019;349:21–40. doi: 10.1016/j.cam.2018.09.004
  • Coles C, Murio DA. Identification of parameters in the 2-D IHCP. Comput Math Appl. 2000;40:939–956. doi: 10.1016/S0898-1221(00)85005-1
  • Mejia CE, Murio DA. Numerical solution of generalized IHCP by discrete mollification. Comput Math Appl. 1996;32(2):33–50. doi: 10.1016/0898-1221(96)00101-0
  • Farin G. Curves and surfaces for computer-Aided geometric design. San Diego: Academic Press; 1997.
  • Amiraslani A. Differentiation matrices in polynomial bases. Math Sci. 2016;10:47–53. doi: 10.1007/s40096-016-0177-x
  • Farouki RT, Rajan VT. Algorithms for polynomials in Bernstein form. Comput Aided Geom Des. 1988;5:1–26. doi: 10.1016/0167-8396(88)90016-7
  • Lorentz GG. Bernstein polynomials. 2nd ed. New York: Chelsea Publishing Co; 1986.
  • Grzymkowski R, Slota D. One-phase inverse Stefan problem solved by Adomain decomposition method. Comput Math Appl. 2006;51:33–40. doi: 10.1016/j.camwa.2005.08.028

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.