173
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

DFT studies on exposure of sulfur impregnated and sulfur functionalized activated carbon to Hg0 vapors

&
Pages 762-778 | Received 04 May 2023, Accepted 07 Jul 2023, Published online: 21 Jul 2023
 

Abstract

For removal of poisonous vapor emissions such as mercury, it is necessary to select suitable materials based on an understanding of their properties and interactions with the vapor. As mercury has a high affinity towards sulfur, it’s adsorption using sulfur-impregnated activated carbon was explored in this study. The impregnation of sulfur on activated carbon followed by the adsorption of Hg0 vapors was computationally investigated using DFT simulations. Sulfur adsorption was investigated on activated carbon with armchair edge, zigzag edge, and graphene surface. Sulfur adsorption was investigated on activated carbon with edge functional groups such as hydroxyl and carboxylic acid. Activated carbon with edge functional groups such as sulfonic acid, sulfenic acid, and sulfinic acid was further investigated for the adsorption of Hg0 vapors. Among the edge functional groups on the activated carbon, the hydroxyl group was most favored for sulfur adsorption and, subsequently, Hg0 vapors. This was quantified in terms of shortest bond lengths, strongest binding energies, and maximum charge transfer. Among the sulfur-containing functional groups on activated carbon, sulfenic acid was the most favored for the adsorption of Hg0 vapors. Transition state calculations were carried out, and a reaction pathway was proposed for the adsorption of Hg0 on sulfur-impregnated activated carbon.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

Hari Desai was funded by the Department of Science and Technology India (DST) under the DST INSPIRE Fellowship program (IF180532).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.