180
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

DFT studies on exposure of sulfur impregnated and sulfur functionalized activated carbon to Hg0 vapors

&
Pages 762-778 | Received 04 May 2023, Accepted 07 Jul 2023, Published online: 21 Jul 2023

References

  • “Science for Environment Policy (2017) Tackling mercury pollution in the EU and worldwide. In-depth Report 15.,” DG Environment by the Science Communication Unit, UWE, Bristol. [Online]. Available: https://environment.ec.europa.eu/research-and-innovation/science-environment-policy_en
  • UN Environment. “GLOBAL MERCURY ASSESSMENT 2018,” UN Environment Programme, Chemicals and Health Branch, Geneva, Switzerland, 2019. [Online]. Available: https://www.unep.org/resources/publication/global-mercury-assessment-2018#:~:text=This%20update%20to%20the%20Global,in%20atmospheric%20and%20aquatic%20environments
  • Henning KD, Schäfer S. Impregnated activated carbon for environmental protection. Gas Sep Purif. 1993;7(4):235–240. doi:10.1016/0950-4214(93)80023-P
  • Fernandes Azevedo B, Barros Furieri L, Peçanha FM, et al. Toxic effects of mercury on the cardiovascular and central nervous systems. J Biomed Biotechnol 2012;2012:1–11. doi:10.1155/2012/949048
  • Sun R, Luo G, Li X, et al. Theoretical research on role of sulfur allotropes on activated carbon surface in adsorbing elemental mercury. Chem Eng J. 2021;404:126639. doi:10.1016/j.cej.2020.126639
  • Chen C, Jia W, Liu S, et al. Simultaneous NO removal and Hg 0 oxidation over CuO doped V 2 O 5 -WO 3 /TiO 2 catalysts in simulated coal-fired flue gas. Energy Fuels. 2018;32(6):7025–7034. doi:10.1021/acs.energyfuels.7b03905
  • Li Y, Yu J, Liu Y, et al. A review on removal of mercury from flue gas utilizing existing air pollutant control devices (APCDs). J Hazard Mater 2022;427:128132. doi:10.1016/j.jhazmat.2021.128132
  • Liu Y, Wang Y, Wang Q, et al. A study on removal of elemental mercury in flue gas using fenton solution. J Hazard Mater 2015;292:164–172. doi:10.1016/j.jhazmat.2015.03.027
  • Zhang L, Wang S, Wu Q, et al. Mercury transformation and speciation in flue gases from anthropogenic emission sources: a critical review. Atmospheric Chem Phys. 2016;16(4):2417–2433. doi:10.5194/acp-16-2417-2016
  • Huang Y, Yin Z, Chen Y, et al. Experimental study on gaseous elemental mercury removal by wet electrostatic precipitators. Fuel. 2018;234:1337–1345. doi:10.1016/j.fuel.2018.08.019
  • Bae K-M, Kim B-J, Park S-J. A review of elemental mercury removal processing. Carbon Lett. 2011;12(3):121–130. doi:10.5714/CL.2011.12.3.121
  • Wang Z, Chen C, Liu H, et al. Enhanced denitrification performance of Alcaligenes sp. TB by Pd stimulating to produce membrane adaptation mechanism coupled with nanoscale zero-valent iron. Sci Total Environ. 2020;708:135063. doi:10.1016/j.scitotenv.2019.135063
  • Philip L, Deshusses MA. The control of mercury vapor using biotrickling filters. Chemosphere. 2008;70(3):411–417. doi:10.1016/j.chemosphere.2007.06.073
  • Qiu R, Wang W, Wang Z, et al. Advancement of modification engineering in lean methane combustion catalysts based on defect chemistry. Catal Sci Technol. 2023;13(8):2566–2584. doi:10.1039/D3CY00087G
  • Kamata H, Ueno S, Naito T, et al. Mercury oxidation by hydrochloric acid over a VO /TiO2 catalyst. Catal Commun. 2008;9(14):2441–2444. doi:10.1016/j.catcom.2008.06.010
  • Li H, Feng S, Yang Z, et al. Density functional theory study of mercury adsorption on CuS surface: effect of typical flue gas components. Energy Fuels. 2019;33(2):1540–1546. doi:10.1021/acs.energyfuels.8b03585
  • Zhang SB, Zhao YC, Yang JP, et al. Simultaneous NO and mercury removal over MnO x /TiO 2 catalyst in different atmospheres. Fuel Process Technol. 2017;166:282–290. doi:10.1016/j.fuproc.2017.06.011
  • Huang W-J, Xu H-M, Qu Z, et al. Significance of Fe2O3 modified SCR catalyst for gas-phase elemental mercury oxidation in coal-fired flue gas. Fuel Process Technol. 2016;149:23–28. doi:10.1016/j.fuproc.2016.04.007
  • Mei Z, Shen Z, Zhao Q, et al. Removal and recovery of gas-phase element mercury by metal oxide-loaded activated carbon. J Hazard Mater 2008;152(2):721–729. doi:10.1016/j.jhazmat.2007.07.038
  • Choudhary R, Aravamudan K, Renganathan T. From wild thornbush to high-performance activated carbon using a novel integrated furnace–microwave activation. Biomass Convers Biorefinery. 2022. doi:10.1007/s13399-022-03392-2
  • Hsi H-C, Chen C-T. Influences of acidic/oxidizing gases on elemental mercury adsorption equilibrium and kinetics of sulfur-impregnated activated carbon. Fuel. 2012;98:229–235. doi:10.1016/j.fuel.2012.04.011
  • Altaf AR, Adewuyi YG, Teng H, et al. Elemental mercury (Hg0) removal from coal syngas using magnetic tea-biochar: experimental and theoretical insights. J Environ Sci. 2022;122:150–161. doi:10.1016/j.jes.2021.09.033
  • Wang Z, Dai L, Yao J, et al. Enhanced adsorption and reduction performance of nitrate by Fe–Pd–Fe3O4 embedded multi-walled carbon nanotubes. Chemosphere. 2021;281:130718. doi:10.1016/j.chemosphere.2021.130718
  • Lei X, Tang Q, Zheng Y, et al. High-entropy single-atom activated carbon catalysts for sustainable oxygen electrocatalysis. Nat Sustain. 2023. doi:10.1038/s41893-023-01101-z
  • Rungnim C, Promarak V, Hannongbua S, et al. Complete reaction mechanisms of mercury oxidation on halogenated activated carbon. J Hazard Mater 2016;310:253–260. doi:10.1016/j.jhazmat.2016.02.033
  • Padak B, Brunetti M, Lewis A, et al. Mercury binding on activated carbon. Environ Prog. 2006;25(4):319–326. doi:10.1002/ep.10165
  • Qu W, Liu J, Shen F, et al. Mechanism of mercury-iodine species binding on carbonaceous surface: insight from density functional theory study. Chem Eng J. 2016;306:704–708. doi:10.1016/j.cej.2016.07.115
  • Zhang J, Li C, Du X, et al. Recycle of waste activated coke as an efficient sorbent for Hg0 removal from coal-fired flue gas. Fuel. 2022;324:124645. doi:10.1016/j.fuel.2022.124645
  • Liao H-Y, Pan S-Y, You S-W, et al. Mercury vapor adsorption and sustainable recovery using novel electrothermal swing system with gold-electrodeposited activated carbon fiber cloth. J Hazard Mater 2021;410:124586. doi:10.1016/j.jhazmat.2020.124586
  • Ansanay Y, Kolar P, Sharma-Shivappa R, et al. Pretreatment of switchgrass for production of glucose via sulfonic acid-impregnated activated carbon. Processes. 2021;9(3):504. doi:10.3390/pr9030504
  • Adams L, Oki A, Grady T, et al. Preparation and characterization of sulfonic acid-functionalized single-walled carbon nanotubes. Phys E. 2009.
  • Gong R, Ma Z, Wang X, et al. Sulfonic-acid-functionalized carbon fiber from waste newspaper as a recyclable carbon based solid acid catalyst for the hydrolysis of cellulose. RSC Adv. 2019;9(50):28902–28907. doi:10.1039/C9RA04568F
  • Wang C, Zou R, Qian M, et al. Improvement of the carbon yield from biomass carbonization through sulfuric acid pre-dehydration at room temperature. Bioresour Technol 2022;355:127251. doi:10.1016/j.biortech.2022.127251
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 16, Revision B.01. 2016.
  • Kim J, Lee N, Min YM, et al. Distinguishing zigzag and armchair edges on graphene nanoribbons by X-ray photoelectron and Raman spectroscopies. ACS Omega. 2018;3(12):17789–17796. doi:10.1021/acsomega.8b02744
  • Worch E. Adsorption technology in water treatment: fundamentals, processes, and modeling. Berlin; Boston: De Gruyter; 2012.
  • Liu W, Vidic R, Brown TD. Optimization of sulfur impregnation protocol for fixed-Bed application of activated carbon-based sorbents for gas-phase mercury removal. Environ Sci Technol 1998;32:531–538. doi:10.1021/es970630+
  • Hari D, Kannan A. A DFT study on Ca-alginate interactions with divalent transition metals. Mater Today Proc. 2022;62:1532–1543. doi:10.1016/j.matpr.2022.02.418
  • Chen P, Gu M, Chen G, et al. DFT study on the reaction mechanism of N2O reduction with CO catalyzed by char. Fuel. 2019;254:115666. doi:10.1016/j.fuel.2019.115666
  • Mao JX. Atomic charges in molecules: a classical concept in modern computational chemistry. Postdoc J. 2014;2(2):1. doi:10.14304/SURYA.JPR.V2N2.2
  • Manceau A, Nagy KL. Relationships between Hg(ii)–S bond distance and Hg(ii) coordination in thiolates. Dalton Trans. 2008;11:1421. doi:10.1039/b718372k
  • Zhang K-Q, Deng O, Wang H, et al. Multifunctional Ag(I)/CAAA-amidphos complex-catalyzed asymmetric [3 + 2] cycloaddition of α-substituted acrylamides. ACS Catal. 2021;11(9):5100–5107. doi:10.1021/acscatal.1c00913

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.