568
Views
35
CrossRef citations to date
0
Altmetric
Articles

Numerical modelling of thermally and hydraulically coupled processes in hydrating cemented tailings backfill columns

, &
Pages 173-199 | Received 29 Apr 2013, Accepted 14 May 2013, Published online: 25 Aug 2013
 

Abstract

A coupled thermo-hydro-chemical (THC) model has been developed to study the thermally and hydraulically coupled processes in hydrating cemented paste backfill (CPB). Afterwards, the THC model is validated against laboratory data (CPB made of Portland cement and CPB that contains mineral admixtures) and field CPB column studies (CPB cured in underground mine environments). In addition, the validated THC model is applied to simulate and predict the thermal (e.g. temperature development and thermal conductivity), hydraulic (e.g. water drainage, suction or negative pore-water pressure development and hydraulic conductivity) and physical (porosity) evolutions of the CPB columns under different conditions, such as various CPB temperatures and water-to-binder ratios. The presented outcomes can contribute to a better understanding of the coupled thermal-hydraulic processes that occur in CPB and the thermal and hydraulic behaviours of CPB structures, as well as a better design of stable, durable and cost-effective CPB mixtures.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.