248
Views
5
CrossRef citations to date
0
Altmetric
Article

Optimizing the grass bio methanation in lab scale reactor utilizing response surface methodology

, ORCID Icon, , , , , & ORCID Icon show all
Pages 721-732 | Received 04 Nov 2022, Accepted 15 Jan 2023, Published online: 28 Jan 2023
 

Abstract

Assessment of biogas production from Napier Grass (NG) in co-digestion with cattle dung (CD) was carried out in laboratory scale reactors and optimization using response surface methodology (RSM) and Box-Behnken design of the experiment. The effects of total alkalinity (TA), volatile solids (VS), pH, and volatile fatty acids (VFA) at three levels were investigated along with gas production. In this study, we determined the optimal ratio for biogas generation from NG and CD co-digestion. The three blending ratios were adopted as NG:CD (50:50), NG:CD (65:35), and NG:CD (75:25). The optimized result revealed that the highest generation of biogas was achieved at the blending ratio NG: CD (65:35) up to 0.4813 m3/kg VS. However, the significant value of R2 (0.9825) during RSM optimization highlighted that, the model might be effectively used to forecast the generation of biogas from the blending of CD and NG. The result shows that TA, VS, pH and VFA are essential for biogas production and the model algorithm could be applied extensively to estimate biogas generation from the co-blending of various organic biomasses. There is a good correlation between each parameter and the overall generation of biogas in the ANOVA results.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.