59
Views
2
CrossRef citations to date
0
Altmetric
Articles

Fluid structure and system dynamics in nanodevices for water desalination

, &
Pages 11561-11571 | Received 26 Jan 2015, Accepted 20 Apr 2015, Published online: 21 May 2015
 

Abstract

Nanofluidic applications are currently being investigated in use for water treatment systems as a power efficient and effective means of removing undesirable substances from drinking or sea water. A detailed study of liquid nanoflows, in both simulation and experimental systems, is a prerequisite for establishing the theory and guiding the technological research and development toward this direction. In this work, we investigate the implications introduced when downsizing a flow system at the nanoscale with molecular dynamics simulations. It is shown that the presence of the walls, hydrophobic or hydrophilic that interacts strongly with fluid particles, is the main effect on flow properties at the nanoscale, although this effect is neglected by the continuum theory that describes flows at macroscopic scale. Furthermore, we estimate the Darcy–Weisbach friction factor for nanoflows of this type.

Notes

Presented at the 12th International Conference on Protection and Restoration of the Environment (PRE XII) 29 June—3 July 2014, Skiathos Island, Greece

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.