59
Views
2
CrossRef citations to date
0
Altmetric
Articles

Fluid structure and system dynamics in nanodevices for water desalination

, &
Pages 11561-11571 | Received 26 Jan 2015, Accepted 20 Apr 2015, Published online: 21 May 2015

References

  • S.J. Kim, S.H. Ko, K.H. Kang, J. Han, Direct seawater desalination by ion concentration polarization, Nat. Nanotechnol. 5 (2010) 297–301.10.1038/nnano.2010.34
  • N. Savage, M.S. Diallo, Nanomaterials and water purification: Opportunities and challenges, J. Nanopart. Res. 7 (2005) 331–342.10.1007/s11051-005-7523-5
  • A. Noy, H.G. Park, F. Fornasiero, J.K. Holt, C.P. Grigoropoulos, O. Bakajin, Nanofluidics in carbon nanotubes, Nano Today 2(6) (2007) 22–29.10.1016/S1748-0132(07)70170-6
  • K. Ritos, D. Mattia, F. Calabrò, J.M. Reese, Flow enhancement in nanotubes of different materials and lengths, J. Chem. Phys. 140 (2014) 014702 1–6.10.1063/1.4846300
  • S. Joseph, N.R. Aluru, Why are carbon nanotubes fast transporters of water?, Nano Lett. 8 (2008) 452–458.10.1021/nl072385q
  • R. Das, Md.E. Ali, S. Bee, A. Hamid, S. Ramakrishna, Z.Z. Chowdhury, Carbon nanotube membranes for water purification: A bright future in water desalination, Desalination 336 (2014) 97–109.10.1016/j.desal.2013.12.026
  • P.S. Goh, A.F. Ismail, B.C. Ng, Carbon nanotubes for desalination: Performance evaluation and current hurdles, Desalination 308 (2013) 2–14.10.1016/j.desal.2012.07.040
  • M.P. Allen, T.J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987.
  • G. Nagayama, P. Cheng, Effects of interface wettability on microscale flow by molecular dynamics simulation, Int. J. Heat Mass Transfer 47 (2004) 501–512.10.1016/j.ijheatmasstransfer.2003.07.013
  • F. Sofos, T.E. Karakasidis, A. Liakopoulos, Parameters affecting slip length at the nanoscale, J. Comput. Theor. Nanosci. 10(3) (2013) 1–4.
  • H.B. Eral, D. van den Ende, F. Mugele, M.H.G. Duits, Influence of confinement by smooth and rough walls on particle dynamics in dense hard-sphere suspensions, Phys. Rev. E 80 (2009) 061403 1–8.10.1103/PhysRevE.80.061403
  • F. Sofos, T.E. Karakasidis, A. Liakopoulos, Transport properties of liquid argon in krypton nanochannels: Anisotropy and non-homogeneity introduced by the solid walls, Int. J. Heat Mass Transfer 52 (2009) 735–743.10.1016/j.ijheatmasstransfer.2008.07.022
  • A.E. Giannakopoulos, F. Sofos, T.E. Karakasidis, A. Liakopoulos, Unified description of size effects of transport properties of liquids flowing in nanochannels, Int. J. Heat Mass Transfer 55 (2012) 5087–5092.10.1016/j.ijheatmasstransfer.2012.05.008
  • W. Sparreboom, A. van den Berg, J.C.T. Eijkel, Principles and applications of nanofluidic transport, Nat. Nanotechnol. 4 (2009) 713–720.
  • S.C. Yang, L.B. Fang, Effect of surface roughness on slip flows in hydrophobic and hydrophilic microchannels by molecular dynamics simulation, Mol. Simul. 31(14–15) (2005) 971–977.10.1080/08927020500423778
  • F. Sofos, T.E. Karakasidis, A. Liakopoulos, Surface wettability effects on flow in rough wall nanochannels, Microfluid. Nanofluid. 12 (2012) 25–31.10.1007/s10404-011-0845-y
  • U. Heinbuch, J. Fischer, Liquid flow in pores: Slip, no-slip, or multilayer sticking, Phys. Rev. A 40 (1989) 1144–1146.10.1103/PhysRevA.40.1144
  • M. Sbragaglia, R. Benzi, L. Biferale, S. Succi, F. Toschi, Surface roughness-hydrophobicity coupling in microchannel and nanochannel flows, Phys. Rev. Lett. 97 (2006) 204503.10.1103/PhysRevLett.97.204503
  • F. Sofos, T.E. Karakasidis, A. Liakopoulos, Effects of wall roughness on flow in nanochannels, Phys. Rev. E 79 (2009) 026305.10.1103/PhysRevE.79.026305
  • M. Kalweit, D. Drikakis, Multiscale methods for micro/nano flows and materials, J. Comput. Theor. Nanosci. 5 (2008) 1923–1938.10.1166/jctn.2008.906
  • N. Asproulis, M. Kalweit, D. Drikakis, A hybrid molecular continuum method using point wise coupling, Adv. Eng. Softw. 46(1) (2012) 85–92.10.1016/j.advengsoft.2010.10.010
  • M. Kalweit, D. Drikakis, Coupling strategies for hybrid molecular-continuum simulation methods, Proc. IMechE Part C, J. Mech. Eng. Sci. 222 (2008) 797–806.10.1243/09544062JMES716
  • N. Aproulis, D. Drikakis, An artificial neural network-based multiscale method for hybrid atomistic-continuum simulations, Microfluid. Nanofluid. 15 (2013) 559–574.10.1007/s10404-013-1154-4
  • C. Zhang, Y. Chen, Slip behavior of liquid flow in rough nanochannels, Chem. Eng. Process. 85 (2014) 203–208.10.1016/j.cep.2014.09.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.