710
Views
9
CrossRef citations to date
0
Altmetric
Brief Report

A novel prenyl-polybasic domain code determines lipid-binding specificity of the K-Ras membrane anchor

&
Pages 220-224 | Received 06 Aug 2017, Accepted 11 Sep 2017, Published online: 15 Jan 2018
 

ABSTRACT

Ras proteins must localize to the plasma membrane (PM) for biological function. The membrane anchor of the K-Ras4B isoform comprises a farnesylated and methylated C-terminal cysteine together with an adjacent hexa-lysine polybasic domain (PBD). Traditionally, polybasic sequences have been thought to interact electrostatically with negatively charged membranes showing no specificity for anionic lipid head groups. By contrast we recently showed that the K-Ras membrane anchor actually exhibits a very high degree of specificity for phosphatidylserine (PtdSer). The selectivity for PtdSer is determined by a combinatorial code comprising the PBD sequence plus the prenyl anchor. Lipid binding specificity is therefore altered by PBD point mutations that in turn modulate signaling output. For example, mutating Lys177 or Lys178 to glutamine switches K-Ras4B lipid affinity from PtdSer to phosphoinositol 4,5-bisphosphate (PIP2). Changing the lipid anchor from farnesyl to geranylgeranyl or the PBD lysines to arginines also changes lipid binding specificity. All-atom molecular dynamics simulations reveal the structural basis for these K-Ras anchor lipid-binding preferences. Here we examine the PM interactions of a series of geranylgeranylated PBD mutants and provide further evidence that the precise PBD sequence and prenyl lipid determines lipid sorting specificity of the K-Ras anchor and hence biological function.

Acknowledgment

This work is partially supported by the Cancer Research and Prevention Institute of Texas (CPRIT: RP170233) to JFH and the National Institutes of Health (NIH: P30 DK056338) to YZ.

Funding

National institute of health ID: DK056338 Cancer Prevention and Research Institute of Texas (CPRIT) ID: RP170233

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.