2,810
Views
24
CrossRef citations to date
0
Altmetric
Original Research

Anticancer effects of anti-CD47 immunotherapy in vivo

ORCID Icon, , , , , , , ORCID Icon & ORCID Icon show all
Article: 1550619 | Received 30 Sep 2018, Accepted 14 Nov 2018, Published online: 11 Dec 2018
 

ABSTRACT

The treatment of breast cancer largely depends on the utilization of immunogenic chemotherapeutics, which, as a common leitmotif, stimulate the exposure of calreticulin (CALR) on the surface of cancer cells, thereby facilitating their recognition by dendritic cells for the uptake of tumor-associated antigens and subsequent antigen cross-presentation to cytotoxic T cells. Breast cancer cells also express the calreticulin antagonist CD47, which inhibits tumor cell phagocytosis and consequently subverts anticancer immune responses. Here, we treated carcinogen-induced or transplantable mouse models of cancer by a CD47 blocking antibody that was at least as efficient as chemotherapy and that could be favorably combined with the anthracycline mitoxantrone in the context of carcinogen-induced orthotopic breast cancers. Monotherapy by CD47 blockade led to a reduction in tumor growth and an increase in overall survival. Of note, this treatment lead to a moderate depletion of M2 macrophages as well as close-to-complete elimination of regulatory T cells from the tumor bed, suggesting a strong favorable impact of CD47 blockade on the tumor microenvironment.

Abbreviations

CALR=

calreticulin

DC=

dendritic cell

ICD=

immunogenic cell death

ip=

intraperitoneal

Acknowledgments

GK is supported by the Ligue contre le Cancer (équipe labellisée); Agence National de la Recherche (ANR) – Projets blancs; Association pour la recherche sur le cancer (ARC); Cancéropôle Ile-de-France; Chancelerie des universités de Paris (Legs Poix); Fondation pour la Recherche Médicale (FRM); the European Research Council (ERC); Institut National du Cancer (INCa); Inserm (HTE); Institut Universitaire de France; the LabEx Immuno-Oncology; the RHU Torino Lumière; the SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); the SIRIC Cancer Research and Personalized Medicine (CARPEM), as well as Vasculox Ltd. LZ was supported by Ligue contre le Cancer (équipe labellisée), RHU TORINO-LUMIERE, Swiss Bridge Foundation, ARC and LabEx Immuno-Oncology.

Conflicts of interest

This work was partially funded by Tioma Therapeutics.

Supplementary Material

Supplemental data for this article can be accessed here.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.