3,998
Views
34
CrossRef citations to date
0
Altmetric
Research Article

Development of Lactobacillus kimchicus DCY51T-mediated gold nanoparticles for delivery of ginsenoside compound K: in vitro photothermal effects and apoptosis detection in cancer cells

, , , , , , , , , , & show all
Pages 30-44 | Received 15 Jun 2018, Accepted 13 Oct 2018, Published online: 19 Jan 2019
 

Abstract

We report a non-covalent loading of ginsenoside compound K (CK) onto our previously reported gold nanoparticles (DCY51T-AuCKNps) through one-pot biosynthesis using a probiotic Lactobacillus kimchicus DCY51T isolated from Korean kimchi. The ginsenoside-loaded gold nanoparticles were characterized by various analytical and spectroscopic techniques such as field emission transmission electron microscopy (FE-TEM), energy-dispersive X-ray (EDX) spectroscopy, elemental mapping, X-ray powder diffraction (XRD), selected area electron diffraction (SAED), Fourier-transform infrared (FTIR) spectroscopy and dynamic light scattering (DLS). Furthermore, drug loading was also determined by liquid chromatography–mass spectrometry (LC–MS). In addition, DCY51T-AuNps and DCY51T-AuCKNps were resistant to aggregation caused by pH variation or a high ionic strength environment. Cell-based study confirmed that DCY51T-AuCKNps exhibited slightly higher cytotoxicity compared to ginsenoside CK treatment in A549 cells (human lung adenocarcinoma cell line) and HT29 (human colorectal adenocarcinoma cell line). Upon laser treatment, DCY51T-AuCKNps showed enhanced cell apoptosis in A549, HT29 and AGS cells (human stomach gastric adenocarcinoma cell line) compared with only DCY51T-AuCKNps treated cells. In conclusion, this preliminary study identified that DCY51T-AuCKNps act as a potent photothermal therapy agents with synergistic chemotherapeutic effects for the treatment of cancer.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by Nano Conversion Foundation funded by the Ministry of Science and ICT (MSIT, Korea) and the Ministry of Trade, Industry and Energy (MOTIE, Korea) (Project No. R201800510) and the support of "Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ0128132017)" Rural Development Administration, Republic of Korea.