1,125
Views
12
CrossRef citations to date
0
Altmetric
REVIEW

Ecological-Fishery Forecasting of Squid Stock Dynamics under Climate Variability and Change: Review, Challenges, and Recommendations

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon show all
 

Abstract

Globally, cephalopods support large industrial-scale fisheries and small-scale to partly large-scale local artisanal fisheries. They are of increasing economic importance as evidenced by the rapid rise in their global landings from 1950 to 2014. Cephalopods are sensitive to environmental variability and climate change and many if not all species show wide fluctuations in abundance. This is most evident in ommastrephid nerito-oceanic squid since their life cycle is associated with boundary currents that are changing with climate change. The inter-annual variability in catch presents challenges for fishers and managers due to the ‘boom-or-bust’ nature of the fishery. A key barrier to rational management of squid fisheries is the low level of development of fishery forecasting. Despite substantial progress made in relating squid population dynamics to environmental variability and change, several challenges remain to develop forecast products to support squid fisheries management. Ideally, squid fisheries management needs a forecasting system that includes all time-scales of forecasting, and especially short - and medium-terms forecasts. The present overview first provides current knowledge of the effects of climate change and variability on squid population dynamics, challenges and opportunities to advance ecological-fishery forecast products, and finally a roadmap is proposed for future development of forecasts products to support squid sustainable fisheries management. As for the adoption of specific forecasting methods to the squid fishery management process, what is important is the relationship between needs, feasibility, and the ultimate success of a forecast will be determined by whether it is used by end-users.

Acknowledgments

This article stems from presentations and discussions held at a workshop “FAO Expert Workshop on effects of climate variability and change on the population dynamics of short-lived species predictive models and forecast products to inform fisheries Management” held in Food and Agriculture Organization of the United Nations (FAO) HQ in Rome in November 21–23, 2017. We would like to thank FAO for sponsoring and hosting this workshop.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.