1,125
Views
12
CrossRef citations to date
0
Altmetric
REVIEW

Ecological-Fishery Forecasting of Squid Stock Dynamics under Climate Variability and Change: Review, Challenges, and Recommendations

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon show all

References cited

  • Adler PB, White EP, Cortez MH. 2020. Matching the forecast horizon with the relevant spatial and temporal processes and data sources. Ecography 43(11):1729–1739. doi:https://doi.org/10.1111/ecog.05271
  • André J, Haddon M, Pecl GT. 2010. Modelling climate‐change‐induced nonlinear thresholds in cephalopod population dynamics. Global Change Biol 16:2866–2875. doi:https://doi.org/10.1111/j.1365-2486.2010.02223.x
  • André M, Solé M, Lenoir M, Durfort M, Quero C, Mas A, Lombarte A, van der Schaar M, López-Bejar M, Morell M, Zaugg S, Houégnigan L. 2011. Low‐frequency sounds induce acoustic trauma in cephalopods. Front Ecol Environ. 9:489–493. doi:https://doi.org/10.1890/100124
  • André M, Morell M, Mas A, et al. 2010. Best practices in management, assessment and control of underwater noise pollution. Laboratory of Applied Bioacoustics, Technical University of Catalonia, CONAT150113NS2008029. www.lab.upc.es. Viewed 3 Mar 2011.
  • Arkhipkin AI, Roa R. 2005. Identification of ontogenetic growth models for squid. Mar. Freshw. Res. 56:371–386.
  • Arkhipkin A, Zawadowski T, Shcherbich Z, Winter A. 2016. Predatory impact on Patagonian squid after sudden range expansion of Argentine squid. ICES CM 2016/D:137.
  • Arkhipkin A, Argüelles J, Shcherbich Z, Yamashiro C. 2015. Ambient temperature influences adult size and life span in jumbo squid (Dosidicus gigas). Can J Fish Aquat Sci. 72(3):400–409. doi:https://doi.org/10.1139/cjfas-2014-0386
  • Arkhipkin A, I, LC, Hendrickson I, Payá GJ, Pierce RH, Roa-Ureta JP, Robin A. Winter 2020. Stock assessment and management of cephalopods: advances and challenges for short-lived fishery resources. ICES J Mar Sci. fsaa038. doi:https://doi.org/10.1093/icesjms/fsaa038; https://academic.oup.com/icesjms/advance-article-abstract/doi/10.1093/icesjms/fsaa038/5828442
  • Arkhipkin AI, Jereb P, Ragonese S. 2000. Growth and maturation in two successive seasonal groups of the short-finned squid, Illex coindetii from the Strait of Sicily (central Mediterranean). ICES J Mar Sci. 57(1):31–41. doi:https://doi.org/10.1006/jmsc.1999.0488
  • Arkhipkin AI, Rodhouse PGK, Pierce GJ, Sauer W, Sakai M, Allcock L, Arguelles J, Bower JR, Castillo G, Ceriola L, et al. 2015. World squid fisheries. Rev Fish Sci Aquacult. 23(2):92–252. // doi:https://doi.org/10.1080/23308249.2015.1026226
  • Arkley K, Jacklin MS, Boulter M, Tower J. 1996. The cuttlefish (Sepia officinalis): A guide to its exploitation in UK waters, Seafish Report N. SR467. Sea‐fish Industry Authority, Hull, UK
  • Augustyn J, Cockcroft A, Kerwath S, Lamberth S, Githaiga-Mwicigi J, Pitcher G, et al. 2017. South Africa In: Bruce FP, Pérez-Ramírez M editors. Climate change impacts on fisheries and aquaculture. Cape Town, South Africa: John Wiley and Sons. p 479–522.
  • Augustyn J, Cockcroft A, Kerwath S, Lamberth S, Githaiga‐Mwicigi J, Pitcher G, Roberts M, van der Lingen C, Auerswald L. 2018. South Africa. In: Phillips B, Pérez-Ramírez M, editors. Climate change impacts on fisheries and aquaculture: a global analysis (II vol.). 1st ed. John Wiley & Sons Ltd.; p. 479–522.
  • Balguerías E, Quintero ME, Hernández‐Gonzalez CL. 2000. The origin of the Saharan Bank cephalopod fishery. ICES J Mar Sci. 57:15–23.
  • Bakun A, Csirke J, 1998. Environmental processes and recruitment variability In: Rodhouse PG, Dawe EG, O'Dor RK, editors. Squid recruitment dynamics. The genus Illex as a model. The commercial Illex species. Influences on variability. FAO Fisheries Technical Paper, No. 376. Rome: FAO. p. 105–124.
  • Basson M, Beddington JR, Crombie JA, Holden SJ, Purchase LV, Tingley GA. 1996. Assessment and management techniques for migratory annual squid stocks: the Illex argentinus fishery in the Southwest Atlantic as an example. Fish Res. 28(1):3–27. doi:https://doi.org/10.1016/0165-7836(96)00481-X
  • Behrenfeld MJ, O’Malley RT, Boss ES, Westberry TK, Graff JR, Halsey KH, et al. 2016. Revaluating ocean warming impacts on global phytoplankton. Nat Clim Change. 6:323–330. doi:https://doi.org/10.1038/nclimate2838
  • Belkin IM. 2009. Rapid warming of Large Marine Ecosystems. Prog Oceanogr. 81(1-4):207–213. Vol. doi:https://doi.org/10.1016/j.pocean.2009.04.011
  • Bjorkstedt EP, Goericke R, McClatchie S, Weber E, Watson W, Lo N, Peterson B, Emmett B, Brodeur R, Peterson J, et al. 2011. State of the California Current 2010–11: Regional Variable Responses to a Strong (But Fleeting?) La Niña. CalCOFI Rep. 52:36–68.
  • Boyle PR, Pierce GJ, Hastie LC. 1995. Flexible reproductive strategies in the squid Loligo forbesi. Mar Biol 121: 501–508. doi:https://doi.org/10.1007/BF00349459
  • Boyle P, Rodhouse P. 2005. Cephalopods: ecology and fisheries. Oxford: Blackwell Science.
  • Brodziak JKT, Hendrickson LC. 1999. An analysis of environmental effects on survey catches of squids Loligo pealei and Illex illecebrosus in the northwest Atlantic. Fish Bull. 97:9–24.
  • Caddy JF, Mahon R. 1995. Reference points for fisheries management. FAO Fisheries Technical Paper No. 347. Rome: FAO.
  • Caddy JF, Rodhouse PG. 1998. Cephalopod and groundfish landings: evidence for ecological change in global fisheries? Rev Fish Biol Fish. 8(4):431–444. doi:https://doi.org/10.1023/A:1008807129366
  • Carvalho GR, Nigmatullin CM. 1998. Stock structure analysis and species identification. In: Rodhouse PG, Dawe EG, O’Dor RK, editors. Squid recruitment dynamics. The genera Illex as a model. The commercial Illex species. Influences on variability. FAO Fish. Techn. Paper, No 376. Rome: FAO. p. 199–232.
  • Ceriola L, Ungaro N, Toteda F. 2007. A “Traffic” Light approach for the assessment of the Broadtail shortfin squid Illex coindetii Verany, 1839 in the Southern Adriatic Sea (Central Mediterranean). Rev Fish Biol Fish. 17(2-3):145–157. doi:https://doi.org/10.1007/s11160-006-9019-5
  • Coelho ML. 1985. Review of the influence of oceanographic factors on cephalopod distribution and life cycles. NAFO Sci Council Studies 9:47–57.
  • Cuccu D, Jereb P, Ragonese S, Giovannini N, Colella S, Cau A. 2009. On the abundance and spatial distribution of Illex coindetii (Cephalopoda: Ommastrephidae) and Eledone moschata (Cephalopoda: Octopodidae) in the Sardinian Seas (central - western Mediterranean) – A preliminary and qualitative investigation with special attention to some environmental constraints. Bollettino Malacologico 45 (suppl):103–109.
  • Dawe EG, Beck PC. 1985. Distribution and size of short-finned squid (Illex illecebrosus) larvae in the Northwest Atlantic from winter surveys in 1969, 1981, and 1982. J Northwest Atlantic Fish Sci. 6:43–55.
  • Dawe EG, Hendrickson LC, Colbourne EB, Drinkwater KF, Showell MA. 2007. Ocean climate effects on the relative abundance of short-finned (Illex illecebrosus) and long-finned (Loligo pealei) squid in the Northwest Atlantic Ocean. Fisheries Oceanogr. 16(4):303–316. doi:https://doi.org/10.1111/j.1365-2419.2007.00431.x
  • Doubleday ZA, Prowse TAA, Arkhipkin A, Pierce GJ, Semmens J, Steer M, Leporati SC, Lourenço S, Quetglas A, Sauer W, et al. 2016. Global proliferation of cephalopods. Curr Biol. 26(10):R406–R407. doi:https://doi.org/10.1016/j.cub.2016.04.002
  • Durgadoo JV, Loveday BR, Reason CJC, Penven P, Biastoch A. 2013. Agulhas leakage predominantly responds to the Southern Hemisphere Westerlies. J Phys Oceanogr. 43(10):2113–2131. do doi:https://doi.org/10.1175/JPO-D-13-047.1
  • de la Chesnais T, Fulton EA, Tracey SR, Pecl GT. 2019. The ecological role of cephalopods and their representation in ecosystem models. Rev Fish Biol Fisheries. 29(2):313–334. 2019). doi:https://doi.org/10.1007/s11160-019-09554-2
  • FAO. 2020. Fishery and Aquaculture Statistics Global capture production 1950-2018 (FishstatJ). In: FAO Fisheries and Aquaculture Department [online]. Rome. Updated 2020. www.fao.org/fishery/statistics/software/fishstatj/en.
  • Field JC, Litvin SY, Carlisle A, Stewart JS, Gilly WF, Ruiz-Cooley RI. 2014. Stable isotope analysis of Humboldt squid prey: Comment on Miller. Mar Ecol Prog Ser. 500:281–285. doi:https://doi.org/10.3354/meps10533
  • Fogarty MJ. 1989. Forecasting yield and abundance in exploited invertebrates In: Caddy JF, editor. Marine invertebrate fisheries: their assessment and management. New York: John Wiley and Sons. p. 701–724
  • Forsythe JW, Hanlon RT. 1989. Growth of the Eastern Atlantic squid. Aquaculture Res. 20(1):1–14. doi:https://doi.org/10.1111/j.1365-2109.1989.tb00437.x
  • Forsythe JW, 1993. A working hypothesis of how seasonal temperature change may impact the field growth of young cephalopods In: Okutani T, O’Dor RK, and Kubodera T, editors. Recent advances in cephalopod fisheries biology. Tokyo: Tokai University Press. p. 133–143
  • Froerman YM. 1986. On possibility of long-term fishery forecasting for nerito-oceanic squids (on an example of short-fin squid Illex illecebrosus). In: Mukhin AI, editor. III All-Union scientific conference on the problems of fishery forecasting (long-term aspects). Abstracts of communications. (28-30 October 1986, Murmansk). Murmansk: PINRO Publishing. p. 33–35. (In Russian)
  • Froerman YM. 1981. The approach to the stock estimation in nerito-oceanic squids of family Ommastrephidae in the Atlantic Ocean on an example of short-fin squid Illex illecebrosus (LeSueur 1821). In: Rikhter VA, editor. Stocks state and basis of the rational fishery in the Atlantic Ocean. Trudy AtlantNIRO. Kaliningrad: AtlantNIRO Publishing. p. 60–69. (In Russian with English abstract).
  • Froerman YM. 1985. Ecology and mechanism of number fluctuations in the short-finned squid Illex illecebrosus//PhD thesis (authors abstract of dissertation for candidate of biological sciences). Moscow: Institute of Oceanology of Academy of Sciences of the USSR. p. 20 (In Russian)
  • Fu LL. 2009. Pattern and velocity of propagation of the global ocean eddy variability. J Geophys Res. 114(C11):C11017. doi:https://doi.org/10.1029/2009JC005349
  • Furukawa H, Sakurai Y. 2008. Effect of low salinity on the survival and development of Japanese common squid Todarodes pacificus hatchling. Fisheries Sci. 74(2):458–460. doi:https://doi.org/10.1111/j.1444-2906.2008.01546.x
  • Gangopadhyay A, Chaudhuri AH, Taylor AH. 2016. On the nature of temporal variability along the Gulf Stream path from 75°W to 55°W. Earth Interactions. 20(9):1–17. 0025.1. doi:https://doi.org/10.1175/EI-D-15-
  • Gangopadhyay A, Gawarkiewicz G, Silva ENS, Monim M, Clark J. 2019. An observed regime shift in the formation of warm core rings from the gulf stream. Nature Sci Rep. 9(1):1–9. www.nature.com/articles/s41598-019-48661-9. doi:https://doi.org/10.1038/s41598-019-48661-9
  • Gangopadhyay A, Gawarkiewicz G, Silva ENS, Silver AM, Monim M, Clark J. 2020. A census of the warm‐core rings of the Gulf Stream: 1980–2017. J Geophys Res Oceans. 125(8) e2019JC016033. doi:https://doi.org/10.1029/2019JC016033
  • Goto T. 2002. Paralarval distribution of the ommastrephid squid Todarodes pacificus during fall in the southern Sea of Japan and its implication for locating spawning grounds. Bull Mar Sci. 71:299–312.
  • Grist EPM, Des Clers SD. 1998. How seasonal temperature variations may influence the structure of annual squid populations. IMA J Math Appl Med Biol. 15(2):187–209. doi:https://doi.org/10.1093/imammb/15.2.187
  • Hanlon RT, Messenger JB. 1996. Cephalopod behaviour. Cambridge (UK) Cambridge University Press; p. 232.
  • Harte M, Borberg J, Sylvia G. 2018. Argentine shortfin squid (Illex argentinus) value chain analysis with an emphasis on the Falkland Islands. Final Report for the South Atlantic Overseas Territories Natural Capital Assessment.
  • Hastie LC, Pierce GJ, Wang J, Bruno L, Moreno A, Piatkowski U, Robin JP. 2009. Cephalopods in the Northeastern Atlantic: Species, biogeography, ecology, exploitation and conservation. Oceanogr Mar Biol Ann Rev 47:111–190.
  • Hendrickson LC. 2004. Population biology of Northern shortfin squid (Illex illecebrosus) in the Northwest Atlantic Ocean and initial documentation of a spawning area. ICES J. Mar. Sci. 61: 252–266. doi: https://doi.org/10.1016/j.icesjms.2003.10.010
  • Hendrickson LC, Hart DR. 2006. An age-based cohort model for estimating the spawning mortality of semelparous cephalopods with an application to per-recruit calculations for the northern shortfin squid, Illex illecebrosus. Fish Res. 78(1):4–13. doi:https://doi.org/10.1016/j.fishres.2005.12.005
  • Hendrickson LC, Holmes EM. 2004. Essential fish habitat source document: northern shortfin squid, Illex illecebrosus, life history and habitat characteristics. 2nd ed. NOAA Tech. Memo. NMFS-NE-19. Woods Hole, MA, USA: NOAA NOAA technical memorandum NMFS-NE p. 36
  • Hendrickson LC, Showell MA. 2019. 2019 Assessment of Northern Shortfin Squid (Illex illecebrosus) in Subareas 3+4. NAFO Scientific Council Report Doc. 19/042, Serial No.N6973, 38 p. https://www.nafo.int/Portals/0/PDFs/sc/2019/scr19-042.pdf
  • Hill KL, Rintoul SR, Coleman R, Ridgway KR. 2008. Wind forced low frequency variability of the East Australia Current. Geophys Res Lett. 35:L08602, doi:https://doi.org/10.1029/2007GL032912
  • Hobday AJ, JR. Hartog 2014. Derived ocean features for dynamic ocean management. Oceanog. 27(4):134–145. doi:https://doi.org/10.5670/oceanog.2014.92
  • Hobday AJ, Lough JM. 2011. Projected climate change in Australian marine and freshwater environments. Mar Freshwater Res. 62(9):1000–1014. doi:https://doi.org/10.1071/MF10302
  • Hobday AJ, Pecl GT. 2014. Identification of global marine hotspots: sentinels for change and vanguards for adaptation action. Rev Fish Biol Fisheries. 24(2):415–425. doi:https://doi.org/10.1007/s11160-013-9326-6
  • Hoving HJ, Gilly WF, Markaida U, Benoit-Bird K, Zachary W, Daniel P, Field JC, Parassenti L, Liu B, Campos B. 2013. Extreme plasticity in life-history strategy allows a migratory predator (jumbo squid) to cope with a changing climate. Glob Change Biol. 19(7):2089–2103. doi:https://doi.org/10.1111/gcb.12198
  • Hu D, Wu L, Cai W, Gupta AS, Ganachaud A, Qiu B, Gordon AL, Lin X, Chen Z, Hu S, et al. 2015. Pacific western boundary currents and their roles in climate. Nature 522(7556):299–308. doi:https://doi.org/10.1038/nature14504
  • Hunsicker ME, Essington TE, Watson R, Sumaila UR. 2010. The contribution of cephalopods to global marine fisheries: can we have our squid and eat them too? Fish Fish. 11(4):421–438. doi:https://doi.org/10.1111/j.1467-2979.2010.00369.x
  • Ibáñez CM, Keyl F. 2010. Cannibalism in cephalopods. Rev Fish Biol Fisheries. 20(1):123–136. doi:https://doi.org/10.1007/s11160-009-9129-y
  • Isoda Y, Bower JR, Hasegawa S. 2005. Assessing environmental effects on recruitment of Japanese common squid (Todarodes pacificus) in the Japan Sea using a biomass dynamics model. Bull Fish Sci Hokkaido Univ. 56:19–31.
  • Jackson GD, O'Dor RK. 2001. Time, space and the ecophysiology of squid growth, life in the fast lane. Vie Milieu 51:205–215.
  • Jacox MG, Alexander MA, Siedlecki S, Chen K, Kwon Y-O, Brodie S, Ortiz I, Tommasi D, Widlansky MJ, Barrie D, et al. 2020. Seasonal-to-interannual prediction of North American coastal marine ecosystems: Forecast methods, mechanisms of predictability, and priority developments. Prog Oceanogr. 183. doi:https://doi.org/10.1016/j.pocean.2020.102307
  • Jereb P, Ceriola L, Ragonese S. 2017. Illex coindetii - Life history, ecological importance and potential for a “key” Role in the Mediterranean Context. NTR-ITPP sr80:69. (+Appendixes I, II, III and IV).
  • Jereb P, Massi D, Norrito G, Fiorentino F. 2001. “Preliminary observations of environmental effects on spatial distribution and abundance of Eledone cirrhosa and Illex coindetii in the Strait of Sicily (Central Mediterranean Sea)”. ICES Council Meeting, 2001/K:34
  • Kaga T, Yamashita N, Okamoto T, Hamatsu T. 2018. Stock assessment and evaluation for winter spawning stock of Japanese common squid (fiscal year 2017) In: Marine fisheries stock assessment and evaluation for Japanese waters (fiscal year 2017). Tokyo: Fishery Agency and Fisheries Research Agency of Japan. p. 626–666. http://abchan.fra.go.jp/digests2017/details/201718.pdf.
  • Kaplan MB, Mooney TA, McCorkle DC, Cohen AL. 2013. Adverse effects of ocean acidification on early development of squid (Doryteuthis pealeii). PLoS One. 8(5):e63714. doi:https://doi.org/10.1371/journal.pone.0063714
  • Kidokoro H, Shikata T, Kitagawa S. 2014. Forecasting the stock size of the autumn cohort of Japanese common squid (Todarodes pacificus) based on the abundance of trawl-caught juveniles. Hidrobiológica 24 (1):23–31.
  • Kidokoro H. 2009. Impact of climatic changes on the distribution, migration pattern and stock abundance of the Japanese common squid, Todarodes pacificus in the Sea of Japan. Bull Fish Res Agen. 27:95–189.
  • Kidokoro H, Goto T, Nagasawa T, Nishida H, Akamine T, Sakurai Y. 2010. Impacts of a climate regime shift on the migration of Japanese common squid (Todarodes pacificus). ICES J Mar Sci.67(7):1314–1322. doi:https://doi.org/10.1093/icesjms/fsq043
  • Kubota H, Miyahara T, Matsukura R, Goto T. 2018. Stock assessment and evaluation for autumn spawning stock of Japanese common squid (fiscal year 2017) In: Marine fisheries stock assessment and evaluation for Japanese waters (fiscal year 2017). Tokyo: Fishery Agency and Fisheries Research Agency of Japan. p. 667–704. http://abchan.fra.go.jp/digests2017/details/201719.pdf.
  • Laptikhovsky VV, Remeslo AV, Nigmatullin Ch M, Polishchuk IA. 2001. Recruitment strength forecasting of the shortfin squid Illex argentinus (Cephalopoda: Ommastrephidae) using satellite SST data, and some consideration of the species’ population structure. ICES C.M./K:15.
  • Lefkaditou E, Politou C-Y, Palialexis A, Dokos J, Cosmopoulos P, Valavanis VD. 2008. Influences of environmental variability on the population structure and distribution patterns of the short-fin squid Illex coindetii (Cephalopoda: Ommastrephidae) in the eastern Ionian Sea. Hydrobiologia 612(1):71–90. doi:https://doi.org/10.1007/s10750-008-9490-1
  • Loveday BR, Durgadoo JV, Reason CJ, Biastoch A, Penven P. 2014. Decoupling of the Agulhas leakage from the Agulhas Current. J Phys Oceanogr. 44(7):1776–1797. doi:https://doi.org/10.1175/JPO-D-13-093.1
  • Marrari M, Piola AR, Valla D. 2017. Variability and 20-year trends in satellite-derived surface chlorophyll concentrations in large marine ecosystems around South and Western Central America. Front Mar Sci. 4:372. doi:https://doi.org/10.3389/fmars.2017.00372
  • Mason E, Pascual A, Gaube P, Ruiz S, Pelegrí JL, Delepoulle A. 2017. Subregional characterization ofmesoscale eddies across the Brazil-Malvinas Confluence. J Geophys Res Oceans. 122(4):3329–3357. doi:https://doi.org/10.1002/2016JC012611
  • Mather JA, Dickel L. 2017. Cephalopod complex cognition. Curr Opin Behav Sci. 16:131–137. doi:https://doi.org/10.1016/j.cobeha.2017.06.008
  • Moustahfid H, Tyrrell MC, Link JS. 2009. Accounting explicitly for predation mortality in surplus production models: an application to longfin inshore squid. N Am J Fish Manag. 29(6):1555–1566. doi:https://doi.org/10.1577/M08-221.1
  • Nakata J. 1993. Long-term changes in catch and biological features of Japanese common squid (Todarodes pacificus) in waters off the east coast of Hokkaido In: Okutani T, O’Dor RK, and Kubodera T, Editor. Recent Advances in Cephalopod Fisheries Biology. Tokyo: Tokai University Press. p. 343–350.
  • Nigmatullin CM. 2004. Biomass, production, biocoenotic role, fishery potential, and prospects for Russian fishery development on squids family Ommastrephidae in the World Ocean//Fisheries and biological researches by AtlantNIRO in 2002–2003. In: Environmental conditions and fisheries utilization of bioresources. Vol. 1. Kaliningrad: AtlantNIRO Publ. p. 144–163. (In Russian with English abstract).
  • Nigmatullin CM. 2017. Fishery and stock abundance dynamics of the Argentine squid of the Southwestern Atlantic in 2014-2016. Trudy AtlantNIRO. New series. Vol. 1, № 1. Kaliningrad: AtlantNIRO Publ. p. 95–123. (In Russian with English abstract).
  • Nigmatullin CM. 2004. Estimation of Biomass, production and fishery potential of Ommastrephid squids in the world ocean and problems of their fishery forecasting. ICES CM 2004/CC: 06. p. 14.
  • Nigmatullin CM. 2019. Seven-years cyclical dynamics of the population of the Argentine squid Illex argentinus in the South-Western Atlantic and its modifications, presumably caused by fishing pressure. In: Ilmast NV, editor. XII Congress of the Hydrobiological Society of the Russian Academy of Sciences: Abstracts. Petrozavodsk, 16–20. September 2019. Petrozavodsk: Karelian Research Centre of Russian Academy of Sciences. p. 364:–365. (In Russian)
  • O’Brien, T. D., Lorenzoni, L., Isensee, K., and Valdés, L. (eds.). 2017. What are Marine Ecological Time Series telling us about the ocean? A status Report, (Paris: IOC-UNESCO), 297. IOC Technical Series, No. 129.
  • O’Dor RK. 1998. Can understanding squid life history strategies and recruitment improve management? South Af J Marine Sci. 20:193–206.
  • O'Brien CE, Roumbedakis K, Winkelmann IE. 2018. The Current State of Cephalopod Science and Perspectives on the Most Critical Challenges Ahead From Three Early-Career Researchers. Front Physiol. 9:700. doi:https://doi.org/10.3389/fphys.2018.00700
  • O'Dor RK. 1992. Big squid in big currents In Benguela Trophic Functioning. Payne, A. 1. L., Brink, K. H., Mann, K. H. and R. Hilborn (Eds). S Afr J Mar Sci. 12: 225–235.
  • O'Dor RK, Coelho ML. 1993. Big squid, big currents and big fisheries. In: Okutani T, O’Dor RK, Kubodera T, editors. Recent advances in cephalopod fisheries biology. Tokyo: Tokai University Press. p. 385–396.
  • O'Dor RK, Webber DM. 1991. Invertebrate athletes: Tradeoffs between transport efficiency and power density in cephalopod evolution. J Exp Biol 160:93–112.
  • Oliver EC, O'Kane TJ, Holbrook NJ. 2015. Projected changes to Tasman Sea eddies in a future climate. J Geophys Res Oceans. 120(11):7150–7165. doi:https://doi.org/10.1002/2015JC010993
  • Parfeniuk AV, Froerman YM, Golub AN. 1992. Particularities in the distribution of the squid juveniles Illex argentinus in the area of the Argentine hollow. Frente Marítimo l2(A):105–111. (in Spanish)
  • Paulino C, Segura M, Chacón G. 2016. Spatial variability of jumbo flying squid (Dosidicus gigas) fishery related to remotely sensed SST and chlorophyll-a concentration (2004–2012). Fish Res. 173:122–127. doi:https://doi.org/10.1016/j.fishres.2015.10.006
  • Payne MR, Hobday AJ, MacKenzie BR, Tommasi D, Dempsey DP, Fässler SMM, Haynie AC, Ji R, Liu G, Lynch PD, et al. 2017. Lessons from the first generation of marine ecological forecast products. Front Mar Sci. 4:289. doi:https://doi.org/10.3389/fmars.2017.00289
  • Pidwirny, M. 2006. Surface and subsurface ocean currents: Ocean Current Map. Fundamentals of Physical Geography, 2nd ed. www.physicalgeography.net/fundamentals/8q_1.html
  • Pierce GJ, Guerra A. 1994. Stock assessment methods used for cephalopod fisheries. Fish Res. 21:255–285. doi:https://doi.org/10.1016/0165-7836(94)90108-2
  • Pierce GJ, Bailey N, Stratoudakis Y, Newton A. 1998. Distribution and abundance of the fished population of Loligo forbesi in. Scottish waters: analysis of research cruise data. ICES J Mar Sci. 55(1):14–33. – doi:https://doi.org/10.1006/jmsc.1997.0257
  • Pierce GJ, Boyle PR. 2003. Empirical modelling of interannual trends in abundance of squid (Loligo forbesi) in Scottish waters. Fish Res. 59(3):305–326. doi:https://doi.org/10.1016/S0165-7836(02)00028-0
  • Pierce GJ, Valavanis VD, Guerra A, Jereb P, Orsi-Relini L, Bellido JM, Katara I, Piatkowski U, Pereira J, Balguerias E, et al. 2008. A review of cephalopod-environment interactions in European Seas. Hydrobiologia 612(1):49–70. doi:https://doi.org/10.1007/s10750-008-9489-7
  • Pierce GJ, Zuur AF, Smith JM, Santos MB, Bailey N, Chen C-S, Boyle PR. 2005. Interannual variation in life-cycle characteristics of the veined squid (Loligo forbesi) in Scottish (UK) waters. Aquat Living Resour. 18(4):327–340. doi:https://doi.org/10.1051/alr:2005037
  • Pörtner HO, Reipschläger A. 1996. Ocean disposal of anthropogenic CO2: physiological effects on tolerant and intolerant animals. In: Ormerod B, Angel M, editors. Ocean Storage of CO2. Environmental Impact. Cheltenham/Boston: Massachusetts Institute of Technology and International Energy Agency, Greenhouse Gas R&D Programme; p. 57–81.
  • Puneeta P, Vijai D, Yamamoto J, Adachi K, Kato Y, Sakurai Y. 2017. Structure and properties of the egg mass of the ommastrephid squid Todarodes pacificus. PLoS One. 12(8):e0182261. doi:https://doi.org/10.1371/journal.pone.0182261
  • Roberts MJ. 2005. Chokka squid (Loligo vulgaris reynaudii) abundance linked to changes in South Africas Agulhas Bank ecosystem during spawning and the early life cycle. ICES J Mar Sci. 62(1):33–55. doi:https://doi.org/10.1016/j.icesjms.2004.10.002
  • Roberts MJ, Sauer WHH. 1994. Environment: the key to understanding the South African chokka squid (Loligo vulgaris reynaudii) life-cycle and fishery? Antartic Sci. 6(2):249–258. doi:https://doi.org/10.1017/S0954102094000386
  • Robin JP, Denis V. 1999. Squid stock fluctuations andwater temperature: temporal analysis of English Channel Loliginidae. J Appl Ecol. 36(1):101–110. doi:https://doi.org/10.1046/j.1365-2664.1999.00384.x
  • Robinson CJ, Gómez-Gutiérrez J, Markaida U, Gilly WF. 2016. Prolonged decline of jumbo squid (Dosidicus gigas) landings in the Gulf of California is associated with chronically low wind stress and decreased chlorophyll a after El Niño 2009–2010. Fish Res. 173 (2):128–138. doi:https://doi.org/10.1016/j.fishres.2015.08.014
  • Robinson CJ, Gómez-Gutiérrez J, Salas De León DA. 2013. Jumbo squid (Dosidicus gigas) landings in the Gulf of California related to remotely sensed SST and concentration of chlorophyll a (1998–2012). Fish Res. 137:97–103. doi:https://doi.org/10.1016/j.fishres.2012.09.006
  • Robison B, Seibel B, Drazen J. 2014. Deep-Sea Octopus (Graneledone boreopacifica) conducts the longest-known egg-brooding period of any animal. PLoS One. 9(7):e103437. doi:10.1371/journal.pone.
  • Rodhouse PG. 2005. World squid resources. ''Review of the State of World Marine Fishery Resources''//FAO Fisheries Technical Paper, No. 457, pp.
  • Rodhouse PGK, Arkhipkin AI, Laptikhovsky V, Nigmatullin C, and CM. Waluda 2013. Illex argentinus, Argentine shortfin squid. In: Rosa R, Pierce G, O’Dor R, editors. Advances in Squid Biology, Ecology and Fisheries. Part II - Oegopsid squids. New York: Nova Science Publishers. p. 109–148.
  • Rodhouse PGK, Pierce GJ, Nichols OC, Sauer WHH, Arkhipkin AI, Laptikhovsky VV, Lipiński MR, Ramos JE, Gras M, Kidokoro H, et al. 2014. Environmental effects on cephalopod population dynamics: implications for management of fisheries. Adv Mar Biol. 67:99–233. 233. doi:https://doi.org/10.1016/B978-0-12-800287-2.00002-0 PMID: 24880795.
  • Rosa R, Seibel BA. 2008. Synergistic effects of climate-related variables suggest future physiological impairment in a top oceanic predator. Proc Natl Acad Sci U SA. 105(52):20776–20780. doi:https://doi.org/10.1073/pnas.0806886105
  • Rosa AL, Yamamoto J, Sakurai Y. 2011. Effects of environmental variability on the spawning areas, catch, and recruitment of the Japanese common squid, Todarodes pacificus (Cephalopoda: Ommastrephidae), from the 1970s to the 2000s. ICES J Mar Sci. 68(6):1114–1121. doi:https://doi.org/10.1093/icesjms/fsr037
  • Rosa R, Yamashiro C, Markaida U, Rodhouse PGK, Waluda CM, Salinas-Zavala CA, Keyl F, O’Dor R, Stewart JS, Gilly WF. 2013. Dosidicus gigas, Humboldt squid In Rosa R, Pierce GJ, O'Dor R, editors. Advances in Squid Biology, Ecology and Fisheries. Part II – Oegopsid Squids. New York: Nova Publisher. p. 169–206.
  • Rouault M, Penven P, Pohl B. 2009. Warming in the Agulhas Current system since the 1980s. Geophys Res Lett. 36(12). doi:https://doi.org/10.1029/2009GL037987
  • Roura A, Álvarez-Salgado XA, González ÁF, Gregori M, Rosón G, Otero J, Guerra Á. 2016. Life strategies of cephalopod paralarvae in a coastal upwelling system (NW Iberian Peninsula): Insights from zooplankton community and spatio-temporal analyses. Fish Oceanogr. 25(3):241–258. doi:https://doi.org/10.1111/fog.12151
  • Rowell TW, Trites RW. 1985. Distribution of larval and juvenile Illex (Mollusca: Cephalopoda) in the Blake Plateau region (Northwest Atlantic). Vie et Milieu 35(3/4):149–161.
  • Sakurai Y, Kidokoro H, Yamashita N, Yamamoto J, Uchikawa K, Hideo T. 2013. Todarodes pacificus, Japanese common squid In: Rosa R, Pierce GJ, O’Dor RK, editors. Advances in Squid Biology, Ecology and Fisheries Part II–Oegopsid Squids. New York: Nova Science Publishers, Inc. pp. 249–271.
  • Sakurai Y, Bower JR, Nakamura Y, Yamamoto S, Watanabe K. 1996. Effect of temperature on development and survival of Todarodes pacificus embryos and paralarvae. Am Malacol Bull. 13 (1/2):89–95.
  • Sakurai Y, Kiyofuji H, Saitoh S, Goto T, Hiyama Y. 2000. Changes in inferred spawning areas of Todarodes pacificus (Cephalopoda: Ommastrephidae) due to changing environmental conditions//ICES. J Mar Sci. 57(1):24–30. doi:https://doi.org/10.1006/jmsc.2000.0667
  • Sauer WHH, Gleadall IG, Downey-Breedt N, Doubleday Z, Gillespie G, Haimovici M, Ibáñez CM, Katugin ON, Leporati S, Lipinski MR, et al. 2019. World Octopus Fisheries. Rev Fish Sci Aquacult. doi:https://doi.org/10.1080/23308249.2019.1680603
  • Sauer WHH, Goschen WS, Koorts AS. 1991. A preliminary investigation of the effect of sea temperature fluctuations and wind direction on catches of chokka squid Loligo vulgaris reynaudii off the Eastern Cape, South Africa. South African Journal of Marine Science. 11(1):467–473. doi:https://doi.org/10.2989/025776191784287466
  • Sauer WHH, Downey NJ, Lipinski MR, Roberts MJ, Smale MJ, Glazer J, Melo Y. 2013. Loligo reynaudii In Rosa R, Pierce G, and O'Dor R, editors. Advances in squid biology, ecology and fisheries. New York, NY: Nova Science Publishers. p. 33–72.
  • Sauer WH, Roberts MJ, Lipinski MR, Smale MJ, Hanlon RT, Webber DM, O'Dor RK. 1997. Choreography of the squid's "nuptial dance". Biol Bull. 192(2):203–207. doi:https://doi.org/10.2307/1542714
  • Schindler DE, Hilborn R. 2015. Sustainability. Prediction, precaution, and policy under global change. Science. 347(6225):953–954. doi:https://doi.org/10.1126/science.1261824
  • Seager R, Simpson IR. 2016. Western boundary currents and climate change. J Geophys Res Oceans. 121(9):7212–7214. doi:https://doi.org/10.1002/2016JC012156
  • Shears NT, Bowen MM. 2017. Half a century of coastal temperature records reveal complex warming trends in western boundary currents. Sci Rep. 7:14527. doi:https://doi.org/10.1038/s41598-017-14944-2
  • Silva L, Vila Y, Torres MA, Sobrino I, Acosta JJ. 2011. Cephalopod assemblages, abundance and species distribution in the Gulf of Cadiz (SW Spain. Aquat Living Resour. 24(1):13–26. doi:https://doi.org/10.1051/alr/2011101
  • Sims D, Genner M, Southward A, Hawkins S. 2001. Timing of squid migration reflects North Atlantic climate variability. Proceedings of the Royal Society B: Biological Sciences, 268, 2607–2611.
  • Sobrino I, Rueda L, Tugores PM, Burgos C, Cojan M, Pierce JG. 2020. Abundance prediction and influence of environmental parameters in the abundance of Octopus (Octopus vulgaris Cuvier, 1797) in the Gulf of Cadiz. Fish Res. 221:105382–107836. doi:https://doi.org/10.1016/j.fishres.2019.105382
  • Summers WC. 1985. Comparative life history adaptations of some myospid and sepiolid squids. NAFO scient. Coun Stud. 9:139–142.
  • Takahara H, Kidokoro H, Sakurai Y. 2017. High temperatures may halve the lifespan of the Japanese flying squid, Todarodes pacificus. J Nat Hist. 51:43-44, 2607–2614. doi:https://doi.org/10.1080/00222933.2016.1244297.
  • Takahashi T, Sutherland SC, Kozyr A. 2009. Global ocean surface water partial pressure of CO2 database: measurements performed during 1968–2008 (Version 2008). ORNL/CDIAC-152, NDP-088r. Oak Ridge (TN): doi:https://doi.org/10.3334/CDIAC/otg.ndp088r
  • Takayanagi S. 1993. Changes in growth and maturity of Japanese common squid (Todarodes pacificus) Related to differences in stock size in the Tsugaru strait, northern Japan. In: Okutani T, O’Dor RK, and Kubodera T, editor. Recent Advances in Cephalopod Fisheries Biology. Tokyo: Tokai University Press; p. 545–553.
  • Uozumi Y. 1998. Fishery biology of arrow squids, Nototodarus gouldi and N. sloanii, in New Zealand waters. Bull Natl Res Inst Far Seas Fish 35:1–111.
  • Urban MC, Bocedi G, Hendry AP, Mihoub J-B, Peer G, Singer A, Bridle JR, Crozier LG, De Meester L, Godsoe W, et al. 2016. Improving the forecast for biodiversity under climate change. Science. 353(6304):aad8466–aad8466. doi:https://doi.org/10.1126/science.aad8466
  • Villanueva R. 2000. Effect of temperature on statolith growth of the European squid Loligo vulgaris during early life. Mar Biol. 136(3):449–460. doi:https://doi.org/10.1007/s002270050704
  • Waluda CM, Pierce GJ. 1998. Temporal and spatial patterns in the distribution of squid Loligo spp. in United Kingdom waters. S Afr J Mar Sci. 20(1):323–336. doi:https://doi.org/10.2989/025776198784126377
  • Waluda CM, Rodhouse PG, Podestá GP, Trathan PN, Pierce GJ. 2001. Surface oceanography of the inferred hatching grounds of Illex argentinus (Cephalopoda: Ommastrephidae) and influences on recruitment variability. Mar Biol. 139(4):671–679. doi:https://doi.org/10.1007/s002270100615
  • Waluda CM, Rodhouse PG, Trathan PN, Pierce GJ. 2001. Remotely sensed mesoscale oceanography and the distribution of Illex argentinus: towards operational squid fisheries oceanography in the South Atlantic. Fisheries Oceanogr.10(2):207–216. // doi:https://doi.org/10.1046/j.1365-2419.2001.00165.x
  • Waluda CM, Trathan PN, Rodhouse PG. 1999. Influence of oceanographic variability on recruitment in the Illex argentinus (Cephalopoda: Ommastrephidae) fishery in the South Atlantic. Mar Ecol Prog Ser. 183:159–167. doi:https://doi.org/10.3354/meps183159
  • Waluda CM, Trathan PN, Rodhouse PG. 2004. Synchronicity in southern hemisphere squid stocks and the influence of the Southern Oscillation and Trans Polar Index. Fisheries Oceanogr. 13(4):255–266. doi:https://doi.org/10.1111/j.1365-2419.2004.00288.x
  • Waluda CM, Yamashiro C, Rodhouse PG. 2006. Influence of the ENSO cycle on the light-fishery for Dosidicus gigas in the Peru Current: an analysis of remotely sensed data. Fish Res. 79(1-2):56–63. doi:https://doi.org/10.1016/j.fishres.2006.02.017
  • Wei Y, Yang Z, Xinjun C, Qian Y, Weiguo Q. 2018. Response of winter cohort abundance of Japanese common squid Todarodes pacificus to the ENSO events. Acta Oceanol Sin. 37(6):61–71. doi:https://doi.org/10.1007/s13131-018-1186-4
  • Yang H, Lohmann G, Wei W, Dima M, Ionita M, Liu J. 2016. Intensification and poleward shift of subtropical western boundary currents in a warming climate. J Geophys Res Oceans. 121(7):4928–4945. doi:https://doi.org/10.1002/2015JC011513
  • Yatsu A, Chiba S, Yamanaka Y, Ito S, Shimizu Y, Kaeriyama M, Watanabe Y. 2013. Climate forcing and the Kuroshio/Oyashio ecosystem. ICES J Mar Sci.70(7):922–933. doi:https://doi.org/10.1093/icesjms/fst084
  • Yu W, Yi Q, Chen X, Chen Y. 2016. Modelling the effects of climate variability on habitat suitability of jumbo flying squid, Dosidicus gigas, in the Southeast Pacific Ocean off Peru. ICES J Mar Sci. 73(2):239–249. doi:https://doi.org/10.1093/icesjms/fsv223
  • Zuur AF, Pierce GJ. 2004. Common trends in northeast Atlantic squid time series. J. Sea Res. 52(1):57–72. doi:https://doi.org/10.1016/j.seares.2003.08.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.