66
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Genetic Algorithms for High-Level Synthesis in VLSI Design

&
Pages 355-383 | Published online: 07 Feb 2007
 

Abstract

VLSI design involves a number of steps such as system-level design, high-level synthesis (HLS), logic design, test generation, and physical design. All these steps involve combinatorial optimizations that are NP complete. Genetic algorithms (GA) have been used to solve many problems in VLSI design. HLS is the crucial step where the architecture of the system is decided upon. We have worked on several problems relating to high-level synthesis and developed GAs for them. In this article we describe our GAs for the following three problems and describe some general methods that we have used in these GAs to enhance their operation.

Minimum node deletion (MND).

Allocation and binding for data path synthesis.

Scheduling, allocation, and binding for the synthesis of structured architectures.

All of the above problems are NP complete. We have used the following techniques to enhance the operation of the GA:

Population control to enforce diversity within a relatively small population size.

Solution completion using approximate algorithms to generate superior valid solutions.

Selection control to reduce crossover between incompatible members.

These GAs have been tested on the usual benchmarks and the results have been found to be acceptably good. The enhancing techniques we describe here are of a general nature and may be used with other GAs to produce better results.

Acknowledgments

C. Mandal acknowledges Kingston University, UK for partial support of this work. P. P. Chakrabarti acknowledges the Department of Science and Technology, Government of India for partial support of this work.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.