2,949
Views
122
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Encapsulating Materials on Water Sorption, Glass Transition and Stability of Juice From Immature Acerola

&
Pages 337-346 | Received 27 Sep 2004, Accepted 24 Jan 2005, Published online: 06 Feb 2007
 

Abstract

Immature acerola juice was dehydrated by spray drying, using as encapsulating material maltodextrin DE25, arabic gum, or a mixture of both in different proportions. A constant ratio of 1:1 was kept between juice solids and encapsulating material. The effect of encapsulation materials on water sorption, glass transition, and physical properties of encapsulated immature acerola juice was investigated. The monolayer moisture of the encapsulated juices, calculated according to the GAB theory, varied from 5.11 to 5.73g H2O/100g of solids (25°C). The glass transition temperature (Tg) of maltodextrin and gum arabic varied from 60 (aw 0.33) to 38°C (aw 0.54), and from 62 (aw 0.33) to 42.6°C (aw 0.54), respectively. The addition of juice to the encapsulating materials decreased the Tg of the juice powder to 39.5–41.3°C (aw 0.33) and 1.84–8.05°C (aw 0.54), but no marked differences were found among the juice powders. The critical aw, i.e., the point of onset of physical alterations in the encapsulated materials, was higher than the corresponding monolayer values. Stickiness was observed at temperatures close to Tg, and collapse occurred at temperatures of 20°C or more above the Tg. Maltodextrin DE25 and gum arabic offered equivalent contributions to the stability of the system.

ACKNOWLEDGMENT

The authors are grateful to FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) for their financing of this project, and to CNPq (Conselho Nacional Desenvolvimento Científico e Tecnológico) for the grant to the author Righetto.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.