82
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Influence of Crystal Habit on the Surface Free Energy and Interparticulate Bonding of L-Lysine Monohydrochloride Dihydrate

&
Pages 27-37 | Received 26 Jun 1998, Accepted 03 Jun 1999, Published online: 18 Jan 2000
 

Abstract

The objective of the present study was to apply a technique to measure the surface energy of crystalline powders without changing the surface properties by compaction, and to relate such measurements to crystal habit and orientation. The surface free energy of uncompacted L-lysine monohydrochloride dihydrate (LH), determined using a modified sessile-drop method, reflected a combined value for the various faces, and was influenced by the relative size of the faces and the orientation of the crystals. The surface free energy values obtained from contact angle measurements were within the possible range calculated from the crystal structure. Discrepancies between the theoretical estimates of interparticulate cohesive strengths and those measured from the tensile strength of powder compacts were used to estimate the flaw sizes (or gaps between the particles) that act as stress concentrators and reduce the tensile strength of the compacts. The flaw sizes indicate packing and compressibility of the various crystal habits. In the absence of compressive load, compacts made out of the equidimensional crystals have the larger flaw sizes (wider cracks or wider gaps between the particles). At higher compaction pressures, the compacts from long rod-shaped crystals have longer crack lengths. The weakness of the compacts made from the long rods at the higher compaction pressures may be because of the longer crack length along the interparticulate boundary, which may result in a higher stress intensity at the crack tip and increased fracture propensity.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.